Compare commits

..

2 commits

Author SHA1 Message Date
e887f46a5d
some small changes
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m51s
2024-02-07 02:05:20 +01:00
fbf52d882a
Kuratowski-Ulam gist 2024-02-06 23:59:07 +01:00
14 changed files with 196 additions and 148 deletions

View file

@ -164,8 +164,10 @@
\]
\end{notation}
\gist{%
The following similar to Fubini,
but for meager sets:
}{}
\begin{theorem}[Kuratowski-Ulam]
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
@ -193,6 +195,7 @@ but for meager sets:
\end{enumerate}
\end{theorem}
\begin{refproof}{thm:kuratowskiulam}
\gist{
(ii) and (iii) are equivalent by passing to the complement.
\begin{claim}%[1a]
@ -286,16 +289,11 @@ but for meager sets:
$M_x$ is comeager
as a countable intersection of comeager sets.
\end{refproof}
}{}
% \phantom\qedhere
% \end{refproof}
% TODO fix claim numbers
\gist{%
\begin{remark}
Suppose that $A$ has the BP.
Then there is an open $U$ such that
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
Then $A = U \symdif M$.
\end{remark}
}{}

View file

@ -1,8 +1,8 @@
\lecture{06}{2023-11-03}{}
\gist{%
% \begin{refproof}{thm:kuratowskiulam}
\begin{enumerate}[(i)]
\item Let $A$ be a set with the Baire Property.
\item Let $A$ be a set with the Baire property.
Write $A = U \symdif M$
for $U$ open and $M$ meager.
Then for all $x$,
@ -51,8 +51,8 @@
Towards a contradiction suppose that $A$ is not meager.
Then $U$ is not meager.
Since $X \times Y$ is second countable,
we have that $A$ is a countable union of open rectangles.
At least one of them, say $G \times H \subseteq A$,
we have that $U$ is a countable union of open rectangles.
At least one of them, say $G \times H \subseteq U$,
is not meager.
By \yaref{thm:kuratowskiulam:c2},
both $G$ and $H$ are not meager.
@ -71,7 +71,59 @@
``$\implies$''
This is \yaref{thm:kuratowskiulam:c1b}.
\end{enumerate}
}{%
\begin{itemize}
\item (ii) $\iff$ (iii): pass to complement.
\item $F \overset{\text{closed}}{\subseteq} X \times Y$ nwd.
$\implies \{x \in X : F_x \text{ nwd}\} $ comeager:
\begin{itemize}
\item $W = F^c$ is open and dense, show that $\{x : W_x \text{ dense}\}$
is comeager.
\item $(V_n)$ enumeration of basis. Show that $U_n \coloneqq \{x : V_n \cap W_x \neq \emptyset\}$
is comeager for all $n$.
\item $U_n$ is open (projection of open) and dense ($W$ is dense, hence $W \cap ( U \times V_n) \neq \emptyset$ for $U$ open).
\end{itemize}
\item $F \subseteq X \times Y$ is nwd $\implies \{x \in X: F_x \text{ nwd}\}$ comeager.
(consider $\overline{F}$).
\item (ii) $\implies$:
$M \subseteq X \times Y$ meager $\implies \{x \in X: M_x \text{ meager}\}$ comeager
(write $M$ as ctbl. union of nwd.)
\item (i): If $A$ has the Baire Property,
then $A = U \symdif M$, $A_x = U_x \symdif M_x$,
$U_x$ open and $\{x : M_x \text{ meager}\}$ comeager
$\implies$ (i).
\item $P \subseteq X$, $Q \subseteq Y$ BP,
then $P \times Q$ meager $\iff$ $P$ or $Q$ meager.
\begin{itemize}
\item $\impliedby$ easy
\item $\implies$ Suppose $P \times Q$ meager, $P$ not meager.
$\emptyset\neq P \cap \underbrace{\{x : (P \times Q)_x \text{ meager} \}}_{\text{comeager}} \ni x$.
$(P \times Q)_x = Q$ is meager.
\end{itemize}
\item (ii) $\impliedby$:
\begin{itemize}
\item $A$ BP, $\{x : A_x \text{ meager}\}$ comeager.
\item $A = U \symdif M$.
\item Suppose $A$ not meager $\leadsto$ $U$ not meager
$\leadsto \exists G \times H \subseteq U$ not meager.
\item $G$ and $H$ are not meager.
\item $\exists x_0 \in G \cap \underbrace{\{x: A_x \text{ meager } \land M_x \text{ meager}\}}_\text{comeager}$.
\item $H$ meager, as
\[
H \subseteq U_{x_0} \subseteq A_{x_0} \cup M_{x_0}.
\]
\end{itemize}
\end{itemize}
}
\end{refproof}
\gist{%
\begin{remark}
Suppose that $A$ has the BP.
Then there is an open $U$ such that
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
Then $A = U \symdif M$.
\end{remark}
}{}
\section{Borel sets} % TODO: fix chapters

View file

@ -127,7 +127,7 @@ since $X^X$ has these properties.
\begin{lemma}[EllisNumakura]
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
Every compact semigroup
Every non-empty compact semigroup
contains an \vocab{idempotent} element,
i.e.~$f$ such that $f^2 = f$.
\end{lemma}

View file

@ -20,9 +20,6 @@
\end{remark}
}{}
% TODO ANKI-MARKER
We will be studying projections to the first $d$ coordinates,
i.e.
\[
@ -49,6 +46,9 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
coordinates.
% TODO ANKI-MARKER
\begin{lemma}
\label{lem:lec20:1}
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$

View file

@ -146,9 +146,7 @@ For this we define
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
\item Minimality:%
\gist{%
\footnote{This is not relevant for the exam.}
\notexaminable{%
Let $\langle E_n : n < \omega \rangle$
be an enumeration of a countable basis for $\mathbb{K}^I$.
@ -165,11 +163,10 @@ For this we define
is dense in $\overline{x} \mapsto f(\overline{x})$.
Since the flow is distal, it suffices to show
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
}{ Not relevant for the exam.}
}
\item The order of the flow is $\eta$:%
\gist{%
\footnote{This is not relevant for the exam.}
\notexaminable{%
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
Consider the flows we get from $(f_i)_{i < j}$
resp.~$(f_i)_{i \le j}$
@ -193,6 +190,6 @@ For this we define
\end{IEEEeqnarray*}
Beleznay and Foreman show that this is open and dense.%
% TODO similarities to the lemma used today
}{ Not relevant for the exam.}
}
\end{itemize}
\end{proof}

View file

@ -37,10 +37,9 @@ Let $I$ be a linear order
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
\end{IEEEeqnarray*}
\todo{Exercise sheet 12}
$S$ is Borel.
$S$ is Borel.\footnote{cf.~\yaref{s12e1}}
We will % TODO ?
We will
construct a reduction
\begin{IEEEeqnarray*}{rCl}
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\

View file

@ -1,10 +1,10 @@
\lecture{24}{2024-01-23}{Combinatorics!}
% ANKI 2
\subsection{Applications to Combinatorics} % Ramsey Theory}
% TODO Define Ultrafilter
\begin{definition}
An \vocab{ultrafilter} on $\N$ (or any other set)
is a family $\cU \subseteq \cP(\N)$
@ -44,6 +44,7 @@
for $\{ n \in \N : \phi(n)\} \in \cU$.
We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$.
\end{notation}
\gist{%
\begin{observe}
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
@ -53,6 +54,7 @@
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
\end{enumerate}
\end{observe}
}{}
\begin{lemma}
\label{lem:ultrafilterlimit}
Let $X $ be a compact Hausdorff space.
@ -70,7 +72,10 @@
\begin{notation}
In this case we write $x = \ulim{\cU}_n x_n$.
\end{notation}
\begin{refproof}{lem:ultrafilterlimit}[sketch]
\begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works
for metric spaces.}
\gist{
For metric spaces:
Whenever we write $X = Y \cup Z$
we have $(\cU n) x_n \in Y$
or $(\cU n) x_n \in Z$.
@ -85,8 +90,13 @@
$C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$
and
$C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$.
It is clear that we can do this for metric spaces,
but such partition can be found for compact Hausdorff spaces as well.
It is clear that we can do this for metric spaces.
}{}
See \yaref{thm:uflimit} for the full proof.
See
\yaref{fact:compactiffufconv} and
\yaref{fact:hdifffilterlimit} for a more general statement.
\end{refproof}
Let $\beta \N$ be the Čech-Stone compactification of $\N$,
@ -120,15 +130,14 @@ This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
This is not commutative,
but associative and $a \mapsto a + b$ is continuous
for a fixed $b$.
This is called a left compact topological semigroup.
for a fixed $b$,
i.e.~it is a left compact topological semigroup.
Let $X$ be a compact Hausdorff space
and let $T \colon X \to X$ be continuous.%
\footnote{Note that this need not be a homeomorphism, i.e.~we only get a $\N$-action
\footnote{Note that this may not be a homeomorphism, i.e.~we only get a $\N$-action
but not a $\Z$-action.}
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
@ -157,7 +166,6 @@ is not necessarily continuous.
\[
\forall n.~\exists k < M.~ T^{n+k}(x) \in G.
\]
\end{definition}
\begin{fact}
Let $\cU, \cV \in \beta\N$

View file

@ -7,15 +7,17 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
where a basis consist of sets
$V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$.
\gist{%
(For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$
and $\beta\N = V_\N$.)
}{}
\item Note also that for $A, B \subseteq \N$,
$V_{A \cup B} = V_A \cup V_B$,
$V_{A^c} = \beta\N \setminus V_A$.
\end{itemize}
\end{fact}
\gist{%
\begin{observe}
\label{ob:bNclopenbasis}
Note that the basis is clopen. In particular
@ -25,6 +27,7 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$,
so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$.
\end{observe}
}{}
\begin{fact}
\label{fact:bNhd}
@ -54,12 +57,14 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
$\bigcap_{j=1}^k F_{i_j} \neq \emptyset$.
We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$.
\gist{%
Replacing each $F_i$ by $V_{A_j^i}$ such
that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$
(cf.~\yaref{ob:bNclopenbasis})
we may assume that $F_i$ is of the form $V_{A_i}$.
We get $\{F_i = V_{A_i} : i \in I\}$
with the finite intersection property.
}{Wlog.~$F_i = V_{A_i}$.}
Hence
$\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$
has the finite intersection property.
@ -78,11 +83,10 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
\item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$.
\item $\N \subseteq \beta\N$ is dense.
\end{itemize}
\todo{Easy exercise}
% TODO write down (exercise)
\end{fact}
\begin{theorem}
\label{thm:uflimit}
For every compact Hausdorff space $X$,
a sequence $(x_n)$ in $X$,
and $\cU \in \beta\N$,
@ -132,6 +136,11 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
% TODO general fact: continuous functions agreeing on a dense set
% agree everywhere (fact section)
\end{proof}
\begin{trivial}+
$\beta$ is a functor from the category of topological
spaces to the category of compact Hausdorff spaces.
It is left adjoint to the inclusion functor.
\end{trivial}
% RECAP
\gist{%
@ -216,13 +225,12 @@ to obtain
Take $x_2 > x_1$ that satisfies this.
\item Suppose we have chosen $\langle x_i : i < n \rangle$.
Since $\cU$ is idempotent, we have
\[
(\cU n)[
n \in P
\land (\cU_k) n + k \in P
\land \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)
\land (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
\]
\begin{IEEEeqnarray*}{rCl}
(\cU n)&& n \in P\\
&\land& (\cU_k) n + k \in P\\
&\land& \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)\\
&\land& (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
\end{IEEEeqnarray*}
Chose $x_n > x_{n-1}$ that satisfies this.
\end{itemize}
Set $H \coloneqq \{x_i : i < \omega\}$.
@ -231,6 +239,3 @@ to obtain
Next time we'll see another proof of this theorem.

View file

@ -3,12 +3,36 @@
% Points: 15 / 16
\nr 1
\todo{handwritten solution}
Let $(X,d)$ be a metric space and $\emptyset \neq A \subseteq X$.
Let $d(x,A) \coloneqq \inf(d(x,a) : a \in A\}$.
\begin{itemize}
\item $d(-,A)$ is uniformly continuous:
Clearly $|d(x,A) - d(y,A)| \le d(x,y)$.
\todo{Add details}
\item $d(x,A) = 0 \iff x \in \overline{A}$.
$d(x,A) = 0$ iff there is a sequence in $A$
converging towards $x$ iff $x \in \overline{A}$.
\end{itemize}
\nr 2
Let $X$ be a discrete space.
For $f,g \in X^{\N}$ define
\[
d(f,g) \coloneqq \begin{cases}
(1 + \min \{n: f(n) \neq g(n)\})^{-1} &: f \neq g,\\
0 &: f= g.
\end{cases}
\]
\begin{enumerate}[(a)]
\item $d$ is an ultrametric:
\item $d$ is an \vocab{ultrametric},
i.e.~$d(f,g) \le \max \{d(f,h), d(g,h)\}$ for all $f,g,h \in X^{\N}$ :
Let $f,g,h \in X^{\N}$.
@ -70,10 +94,15 @@
\nr 3
Consider $\N$ as a discrete space and $\N^{\N}$ with the product topology.
Let
\[
S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
\]
\begin{enumerate}[(a)]
\item $S_{\infty}$ is a Polish space:
From (2) we know that $\N^{\N}$ is Polish.
From \yaref{s1e2} we know that $\N^{\N}$ is Polish.
Hence it suffices to show that $S_{\infty}$ is $G_{\delta}$
with respect to $\N^\N$.
@ -111,69 +140,9 @@
Clearly there cannot exist a finite subcover
as $B$ is the disjoint union of the $B_j$.
% TODO Think about this
\end{enumerate}
\nr 4
% (uniform metric)
%
% \begin{enumerate}[(a)]
% \item $d_u$ is a metric on $\cC(X,Y)$:
%
% It is clear that $d_u(f,f) = 0$.
%
% Let $f \neq g$. Then there exists $x \in X$ with
% $f(x) \neq g(x)$, hence $d_u(f,g) \ge d(f(x), g(x)) > 0$.
%
% Since $d$ is symmetric, so is $d_u$.
%
% Let $f,g,h \in \cC(X,Y)$.
% Take some $\epsilon > 0$
% choose $x_1, x_2 \in X$
% with $d_u(f,g) \le d(f(x_1), g(x_1)) + \epsilon$,
% $d_u(g,h) \le d(g(x_2), h(x_2)) + \epsilon$.
%
% Then for all $x \in X$
% \begin{IEEEeqnarray*}{rCl}
% d(f(x), h(x)) &\le &
% d(f(x), g(x)) + d(g(x), h(x))\\
% &\le & d(f(x_1), g(x_1)) + d(g(x_2), h(x_2))-2\epsilon\\
% &\le & d_u(f,g) + d_u(g,h) - 2\epsilon.
% \end{IEEEeqnarray*}
% Thus $d_u(f,g) \le d_u(f,g) + d_u(g,h) - 2\epsilon$.
% Taking $\epsilon \to 0$ yields the triangle inequality.
%
% \item $\cC(X,Y)$ is a Polish space:
% \todo{handwritten solution}
%
% \begin{itemize}
% \item $d_u$ is a complete metric:
%
% Let $(f_n)_n$ be a Cauchy series with respect to $d_u$.
%
% Then clearly $(f_n(x))_n$ is a Cauchy sequence with respect
% to $d$ for every $x$.
% Hence there exists a pointwise limit $f$ of the $f_n$.
% We need to show that $f$ is continuous.
%
% %\todo{something something uniform convergence theorem}
%
% \item $(\cC(X,Y), d_u)$ is separable:
%
% Since $Y$ is separable, there exists a countable
% dense subset $S \subseteq Y$.
%
% Consider $\cC(X,S) \subseteq \cC(X,Y)$.
% Take some $f \in \cC(X,Y)$.
% Since $X$ is compact,
%
%
% % TODO
%
% \end{itemize}
% \end{enumerate}
\begin{fact}
Let $X $ be a compact Hausdorff space.
Then the following are equivalent:
@ -205,7 +174,7 @@
Let $X$ be compact Polish\footnote{compact metrisable $\implies$ compact Polish}
and $Y $ Polish.
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
Consider the \vocab{uniform metric} $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
Clearly $d_u$ is a metric.
\begin{claim}
@ -243,7 +212,7 @@ Clearly $d_u$ is a metric.
for each $y \in X_m$.
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
we find $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
since $f$ is uniformly continuous.
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
We have $d_u(f,g) \le \eta$,

View file

@ -12,6 +12,14 @@
\nr 1
Let $X$ be a Polish space.
Then there exists an injection $f\colon X \to 2^\omega$
such that for each $n < \omega$,
the set $f^{-1}(\{(y_n) \in 2^\omega : y_n = 1\})$
is open.
Moreover if $V \subseteq 2^{ \omega}$ is closed,
then $f^{-1}(V)$ is $G_\delta$.
Let $(U_i)_{i < \omega}$ be a countable base of $X$.
Define
\begin{IEEEeqnarray*}{rCl}
@ -19,6 +27,7 @@ Define
x &\longmapsto & (x_i)_{i < \omega}
\end{IEEEeqnarray*}
where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise.
\gist{
Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$
is open.
We have that $f$ is injective since $X$ is T1.
@ -51,17 +60,21 @@ Since $2^{n} \setminus \left( \prod_{i < n} X_i \right)$
is finite, we get that
$f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
is $G_\delta$ as a finite union of $G_{\delta}$ sets.
}{}
\nr 2
Let $X$ be a Polish space. Then $X$ is homeomorphic to a closed subspace of $\R^{ \omega}$ :
\todo{handwritten solution}
(b)
Let $f(x^{(i)})$ be a sequence in $f(X)$.
Suppose that $f(x^{(i)}) \to y$.
We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
% \begin{itemize}
% \item
% Let $f(x^{(i)})$ be a sequence in $f(X)$.
% Suppose that $f(x^{(i)}) \to y$.
% We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
% Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
% Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
% \end{itemize}
\nr 3
@ -130,6 +143,13 @@ Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
\end{proof}
\nr 4
Define
\begin{IEEEeqnarray*}{rCl}
f\colon \omega^{\omega} &\longrightarrow & 2^\omega \\
(x_n)&\longmapsto & 0^{x_0} 1 0^{x_1} 1 \ldots.
\end{IEEEeqnarray*}
\begin{enumerate}[(1)]
\item $f$ is a topological embedding:
Consider a basic open set

View file

@ -8,7 +8,7 @@ Let $A \neq \emptyset$ be discrete.
For $D \subseteq A^{\omega}$,
let
\[
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}..
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}.
\]
\begin{enumerate}[(a)]
\item For any $D \subseteq A^\omega$, $T_D$ is a pruned tree:

View file

@ -63,7 +63,7 @@ Flows are always on non-empty spaces $X$.
\begin{proof}
(i) $\implies$ (ii):
Let $(Y,T)$ be a subflow of $(X,T)$.
take $y \in Y$. Then $Ty$ is dense in mKX.
take $y \in Y$. Then $Ty$ is dense in $X$.
But $Ty \subseteq Y$, so $Y$ is dense in $X$.
Since $Y$ is closed, we get $Y = X$.

View file

@ -84,11 +84,12 @@ with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$.
\nr 4
% Examinable!
% TODO THINK!
\gist{%
% RECAP
Let $X$ be a metrizable topological space.
Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$.
Let $X$ be a metrizable topological space
and let $K(X) \coloneqq \{ K \subseteq X : K \text{ compact}\}$.
The Vietoris topology has a basis given by
$\{K \subseteq U\}$, $U$ open (type 1)
@ -103,19 +104,21 @@ $\max_{a \in A} d(a,B)$.
On previous sheets, we checked that $d_H$ is a metric.
If $X$ is separable, then so is $K(X)$.
% END RECAP
}{}
\begin{fact}
\label{fact:s12e4}
Let $(X,d)$ be a complete metric space.
Then so is $(K(X), d_H)$.
\end{fact}
\begin{proof}
\begin{refproof}{fact:s12e4}
We need to show that $(K(X), d_H)$ is complete.
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
Wlog.~$K_n \neq \emptyset$ for all $n$.
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
\text{ $X$ intersects $K_n$ for infinitely many $n$}\}$.
\text{ $U \cap K_n \neq \emptyset$ for infinitely many $n$}\}$.
Equivalently,
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
@ -123,12 +126,12 @@ Then so is $(K(X), d_H)$.
(A cluster point is a limit of some subsequence).
\begin{claim}
\label{fact:s12e4:c1}
$K_n \to K$.
\end{claim}
\begin{subproof}
\begin{refproof}{fact:s12e4:c1}
Note that $K$ is closed (the complement is open).
\begin{claim}
$K \neq \emptyset$.
\end{claim}
@ -159,7 +162,7 @@ Then so is $(K(X), d_H)$.
space, it is complete.
So it suffices to show that $K$ is totally bounded.
Let $\epsilon > 0$
Let $\epsilon > 0$.
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
for all $i,j \ge N$.
@ -200,9 +203,8 @@ Then so is $(K(X), d_H)$.
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
(same trick as before).
\end{subproof}
\end{proof}
\end{refproof}
\end{refproof}
\begin{fact}
If $X$ is compact metrisable,
@ -223,9 +225,3 @@ Then so is $(K(X), d_H)$.
% TODO complete and totally bounded Sutherland metric and topological spaces

View file

@ -2,7 +2,7 @@
\tutorial{15}{2024-01-31}{Additions}
The following is not relevant for the exam,
but gives a more general picture.
but aims to give a more general picture.
Let $X$ be a topological space
and let $\cF$ be a filter on $ X$.
@ -12,6 +12,7 @@ all sets containing an open neighbourhood of $x$,
is contained in $\cF$.
\begin{fact}
\label{fact:hdifffilterlimit}
$X$ is Hausdorff iff every filter has at most one limit point.
\end{fact}
\begin{proof}
@ -21,6 +22,7 @@ is contained in $\cF$.
\end{proof}
\begin{fact}
\label{fact:compactiffufconv}
$X$ is (quasi-) compact
iff every ultrafilter converges.
\end{fact}
@ -29,7 +31,7 @@ is contained in $\cF$.
Let $\cU$ be an ultrafilter.
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
of closed sets.
By the FIP we geht that there exist
By the FIP we get that there exist
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
Let $N$ be an open neighbourhood of $c$.
If $N^c \in \cU$, then $c \in N^c \lightning$
@ -69,17 +71,19 @@ so is $f(\cB)$.
\end{fact}
\begin{proof}
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
The RHS is a dense closed set, i.e.~the entire space.
\end{proof}
We can uniquely extend $f\colon X \to Y$ continuous
We can uniquely extend a continuous $f\colon X \to Y$
to a continuous $\overline{f}\colon \beta X \to Y$
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
Let $V$ be an open neighbourhood of $Y$ in $\overline{f}\left( U) \right) $.
Consider $f^{-1}(V)$.
Consider the basic open set
\[
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
\]
% Let $V$ be an open neighbourhood of $y \in \overline{f}\left( U \right)$.
% Consider $f^{-1}(V)$.
% Then
% \[
% \{\cF \in \beta\N : \cF \ni f^{-1}(V)\}
% \]
% is a basic open set.
\todo{I missed the last 5 minutes}