Compare commits

..

No commits in common. "e887f46a5df4c0a1c9d72b854b676001fabad050" and "9d601c2e62f6fd8ded70e3e265b429843d0baeac" have entirely different histories.

14 changed files with 148 additions and 196 deletions

View file

@ -164,10 +164,8 @@
\]
\end{notation}
\gist{%
The following similar to Fubini,
but for meager sets:
}{}
\begin{theorem}[Kuratowski-Ulam]
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
@ -195,7 +193,6 @@ but for meager sets:
\end{enumerate}
\end{theorem}
\begin{refproof}{thm:kuratowskiulam}
\gist{
(ii) and (iii) are equivalent by passing to the complement.
\begin{claim}%[1a]
@ -289,11 +286,16 @@ but for meager sets:
$M_x$ is comeager
as a countable intersection of comeager sets.
\end{refproof}
}{}
% \phantom\qedhere
% \end{refproof}
% TODO fix claim numbers
\gist{%
\begin{remark}
Suppose that $A$ has the BP.
Then there is an open $U$ such that
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
Then $A = U \symdif M$.
\end{remark}
}{}

View file

@ -1,8 +1,8 @@
\lecture{06}{2023-11-03}{}
\gist{%
% \begin{refproof}{thm:kuratowskiulam}
\begin{enumerate}[(i)]
\item Let $A$ be a set with the Baire property.
\item Let $A$ be a set with the Baire Property.
Write $A = U \symdif M$
for $U$ open and $M$ meager.
Then for all $x$,
@ -51,8 +51,8 @@
Towards a contradiction suppose that $A$ is not meager.
Then $U$ is not meager.
Since $X \times Y$ is second countable,
we have that $U$ is a countable union of open rectangles.
At least one of them, say $G \times H \subseteq U$,
we have that $A$ is a countable union of open rectangles.
At least one of them, say $G \times H \subseteq A$,
is not meager.
By \yaref{thm:kuratowskiulam:c2},
both $G$ and $H$ are not meager.
@ -71,59 +71,7 @@
``$\implies$''
This is \yaref{thm:kuratowskiulam:c1b}.
\end{enumerate}
}{%
\begin{itemize}
\item (ii) $\iff$ (iii): pass to complement.
\item $F \overset{\text{closed}}{\subseteq} X \times Y$ nwd.
$\implies \{x \in X : F_x \text{ nwd}\} $ comeager:
\begin{itemize}
\item $W = F^c$ is open and dense, show that $\{x : W_x \text{ dense}\}$
is comeager.
\item $(V_n)$ enumeration of basis. Show that $U_n \coloneqq \{x : V_n \cap W_x \neq \emptyset\}$
is comeager for all $n$.
\item $U_n$ is open (projection of open) and dense ($W$ is dense, hence $W \cap ( U \times V_n) \neq \emptyset$ for $U$ open).
\end{itemize}
\item $F \subseteq X \times Y$ is nwd $\implies \{x \in X: F_x \text{ nwd}\}$ comeager.
(consider $\overline{F}$).
\item (ii) $\implies$:
$M \subseteq X \times Y$ meager $\implies \{x \in X: M_x \text{ meager}\}$ comeager
(write $M$ as ctbl. union of nwd.)
\item (i): If $A$ has the Baire Property,
then $A = U \symdif M$, $A_x = U_x \symdif M_x$,
$U_x$ open and $\{x : M_x \text{ meager}\}$ comeager
$\implies$ (i).
\item $P \subseteq X$, $Q \subseteq Y$ BP,
then $P \times Q$ meager $\iff$ $P$ or $Q$ meager.
\begin{itemize}
\item $\impliedby$ easy
\item $\implies$ Suppose $P \times Q$ meager, $P$ not meager.
$\emptyset\neq P \cap \underbrace{\{x : (P \times Q)_x \text{ meager} \}}_{\text{comeager}} \ni x$.
$(P \times Q)_x = Q$ is meager.
\end{itemize}
\item (ii) $\impliedby$:
\begin{itemize}
\item $A$ BP, $\{x : A_x \text{ meager}\}$ comeager.
\item $A = U \symdif M$.
\item Suppose $A$ not meager $\leadsto$ $U$ not meager
$\leadsto \exists G \times H \subseteq U$ not meager.
\item $G$ and $H$ are not meager.
\item $\exists x_0 \in G \cap \underbrace{\{x: A_x \text{ meager } \land M_x \text{ meager}\}}_\text{comeager}$.
\item $H$ meager, as
\[
H \subseteq U_{x_0} \subseteq A_{x_0} \cup M_{x_0}.
\]
\end{itemize}
\end{itemize}
}
\end{refproof}
\gist{%
\begin{remark}
Suppose that $A$ has the BP.
Then there is an open $U$ such that
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
Then $A = U \symdif M$.
\end{remark}
}{}
\section{Borel sets} % TODO: fix chapters

View file

@ -127,7 +127,7 @@ since $X^X$ has these properties.
\begin{lemma}[EllisNumakura]
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
Every non-empty compact semigroup
Every compact semigroup
contains an \vocab{idempotent} element,
i.e.~$f$ such that $f^2 = f$.
\end{lemma}

View file

@ -20,6 +20,9 @@
\end{remark}
}{}
% TODO ANKI-MARKER
We will be studying projections to the first $d$ coordinates,
i.e.
\[
@ -46,9 +49,6 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
coordinates.
% TODO ANKI-MARKER
\begin{lemma}
\label{lem:lec20:1}
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$

View file

@ -146,7 +146,9 @@ For this we define
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
\item Minimality:%
\notexaminable{%
\gist{%
\footnote{This is not relevant for the exam.}
Let $\langle E_n : n < \omega \rangle$
be an enumeration of a countable basis for $\mathbb{K}^I$.
@ -163,10 +165,11 @@ For this we define
is dense in $\overline{x} \mapsto f(\overline{x})$.
Since the flow is distal, it suffices to show
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
}
}{ Not relevant for the exam.}
\item The order of the flow is $\eta$:%
\notexaminable{%
\gist{%
\footnote{This is not relevant for the exam.}
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
Consider the flows we get from $(f_i)_{i < j}$
resp.~$(f_i)_{i \le j}$
@ -190,6 +193,6 @@ For this we define
\end{IEEEeqnarray*}
Beleznay and Foreman show that this is open and dense.%
% TODO similarities to the lemma used today
}
}{ Not relevant for the exam.}
\end{itemize}
\end{proof}

View file

@ -37,9 +37,10 @@ Let $I$ be a linear order
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
\end{IEEEeqnarray*}
$S$ is Borel.\footnote{cf.~\yaref{s12e1}}
\todo{Exercise sheet 12}
$S$ is Borel.
We will
We will % TODO ?
construct a reduction
\begin{IEEEeqnarray*}{rCl}
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\

View file

@ -1,10 +1,10 @@
\lecture{24}{2024-01-23}{Combinatorics!}
% ANKI 2
\subsection{Applications to Combinatorics} % Ramsey Theory}
% TODO Define Ultrafilter
\begin{definition}
An \vocab{ultrafilter} on $\N$ (or any other set)
is a family $\cU \subseteq \cP(\N)$
@ -44,7 +44,6 @@
for $\{ n \in \N : \phi(n)\} \in \cU$.
We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$.
\end{notation}
\gist{%
\begin{observe}
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
@ -54,7 +53,6 @@
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
\end{enumerate}
\end{observe}
}{}
\begin{lemma}
\label{lem:ultrafilterlimit}
Let $X $ be a compact Hausdorff space.
@ -72,10 +70,7 @@
\begin{notation}
In this case we write $x = \ulim{\cU}_n x_n$.
\end{notation}
\begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works
for metric spaces.}
\gist{
For metric spaces:
\begin{refproof}{lem:ultrafilterlimit}[sketch]
Whenever we write $X = Y \cup Z$
we have $(\cU n) x_n \in Y$
or $(\cU n) x_n \in Z$.
@ -90,13 +85,8 @@
$C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$
and
$C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$.
It is clear that we can do this for metric spaces.
}{}
See \yaref{thm:uflimit} for the full proof.
See
\yaref{fact:compactiffufconv} and
\yaref{fact:hdifffilterlimit} for a more general statement.
It is clear that we can do this for metric spaces,
but such partition can be found for compact Hausdorff spaces as well.
\end{refproof}
Let $\beta \N$ be the Čech-Stone compactification of $\N$,
@ -130,14 +120,15 @@ This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
This is not commutative,
but associative and $a \mapsto a + b$ is continuous
for a fixed $b$,
i.e.~it is a left compact topological semigroup.
for a fixed $b$.
This is called a left compact topological semigroup.
Let $X$ be a compact Hausdorff space
and let $T \colon X \to X$ be continuous.%
\footnote{Note that this may not be a homeomorphism, i.e.~we only get a $\N$-action
\footnote{Note that this need not be a homeomorphism, i.e.~we only get a $\N$-action
but not a $\Z$-action.}
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
@ -166,6 +157,7 @@ is not necessarily continuous.
\[
\forall n.~\exists k < M.~ T^{n+k}(x) \in G.
\]
\end{definition}
\begin{fact}
Let $\cU, \cV \in \beta\N$

View file

@ -7,17 +7,15 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
where a basis consist of sets
$V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$.
\gist{%
(For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$
and $\beta\N = V_\N$.)
}{}
\item Note also that for $A, B \subseteq \N$,
$V_{A \cup B} = V_A \cup V_B$,
$V_{A^c} = \beta\N \setminus V_A$.
\end{itemize}
\end{fact}
\gist{%
\begin{observe}
\label{ob:bNclopenbasis}
Note that the basis is clopen. In particular
@ -27,7 +25,6 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$,
so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$.
\end{observe}
}{}
\begin{fact}
\label{fact:bNhd}
@ -57,14 +54,12 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
$\bigcap_{j=1}^k F_{i_j} \neq \emptyset$.
We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$.
\gist{%
Replacing each $F_i$ by $V_{A_j^i}$ such
that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$
(cf.~\yaref{ob:bNclopenbasis})
we may assume that $F_i$ is of the form $V_{A_i}$.
We get $\{F_i = V_{A_i} : i \in I\}$
with the finite intersection property.
}{Wlog.~$F_i = V_{A_i}$.}
Hence
$\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$
has the finite intersection property.
@ -83,10 +78,11 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
\item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$.
\item $\N \subseteq \beta\N$ is dense.
\end{itemize}
\todo{Easy exercise}
% TODO write down (exercise)
\end{fact}
\begin{theorem}
\label{thm:uflimit}
For every compact Hausdorff space $X$,
a sequence $(x_n)$ in $X$,
and $\cU \in \beta\N$,
@ -136,11 +132,6 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
% TODO general fact: continuous functions agreeing on a dense set
% agree everywhere (fact section)
\end{proof}
\begin{trivial}+
$\beta$ is a functor from the category of topological
spaces to the category of compact Hausdorff spaces.
It is left adjoint to the inclusion functor.
\end{trivial}
% RECAP
\gist{%
@ -225,12 +216,13 @@ to obtain
Take $x_2 > x_1$ that satisfies this.
\item Suppose we have chosen $\langle x_i : i < n \rangle$.
Since $\cU$ is idempotent, we have
\begin{IEEEeqnarray*}{rCl}
(\cU n)&& n \in P\\
&\land& (\cU_k) n + k \in P\\
&\land& \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)\\
&\land& (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
\end{IEEEeqnarray*}
\[
(\cU n)[
n \in P
\land (\cU_k) n + k \in P
\land \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)
\land (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
\]
Chose $x_n > x_{n-1}$ that satisfies this.
\end{itemize}
Set $H \coloneqq \{x_i : i < \omega\}$.
@ -239,3 +231,6 @@ to obtain
Next time we'll see another proof of this theorem.

View file

@ -3,36 +3,12 @@
% Points: 15 / 16
\nr 1
Let $(X,d)$ be a metric space and $\emptyset \neq A \subseteq X$.
Let $d(x,A) \coloneqq \inf(d(x,a) : a \in A\}$.
\begin{itemize}
\item $d(-,A)$ is uniformly continuous:
Clearly $|d(x,A) - d(y,A)| \le d(x,y)$.
\todo{Add details}
\item $d(x,A) = 0 \iff x \in \overline{A}$.
$d(x,A) = 0$ iff there is a sequence in $A$
converging towards $x$ iff $x \in \overline{A}$.
\end{itemize}
\todo{handwritten solution}
\nr 2
Let $X$ be a discrete space.
For $f,g \in X^{\N}$ define
\[
d(f,g) \coloneqq \begin{cases}
(1 + \min \{n: f(n) \neq g(n)\})^{-1} &: f \neq g,\\
0 &: f= g.
\end{cases}
\]
\begin{enumerate}[(a)]
\item $d$ is an \vocab{ultrametric},
i.e.~$d(f,g) \le \max \{d(f,h), d(g,h)\}$ for all $f,g,h \in X^{\N}$ :
\item $d$ is an ultrametric:
Let $f,g,h \in X^{\N}$.
@ -94,15 +70,10 @@ d(f,g) \coloneqq \begin{cases}
\nr 3
Consider $\N$ as a discrete space and $\N^{\N}$ with the product topology.
Let
\[
S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
\]
\begin{enumerate}[(a)]
\item $S_{\infty}$ is a Polish space:
From \yaref{s1e2} we know that $\N^{\N}$ is Polish.
From (2) we know that $\N^{\N}$ is Polish.
Hence it suffices to show that $S_{\infty}$ is $G_{\delta}$
with respect to $\N^\N$.
@ -140,9 +111,69 @@ S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
Clearly there cannot exist a finite subcover
as $B$ is the disjoint union of the $B_j$.
% TODO Think about this
\end{enumerate}
\nr 4
% (uniform metric)
%
% \begin{enumerate}[(a)]
% \item $d_u$ is a metric on $\cC(X,Y)$:
%
% It is clear that $d_u(f,f) = 0$.
%
% Let $f \neq g$. Then there exists $x \in X$ with
% $f(x) \neq g(x)$, hence $d_u(f,g) \ge d(f(x), g(x)) > 0$.
%
% Since $d$ is symmetric, so is $d_u$.
%
% Let $f,g,h \in \cC(X,Y)$.
% Take some $\epsilon > 0$
% choose $x_1, x_2 \in X$
% with $d_u(f,g) \le d(f(x_1), g(x_1)) + \epsilon$,
% $d_u(g,h) \le d(g(x_2), h(x_2)) + \epsilon$.
%
% Then for all $x \in X$
% \begin{IEEEeqnarray*}{rCl}
% d(f(x), h(x)) &\le &
% d(f(x), g(x)) + d(g(x), h(x))\\
% &\le & d(f(x_1), g(x_1)) + d(g(x_2), h(x_2))-2\epsilon\\
% &\le & d_u(f,g) + d_u(g,h) - 2\epsilon.
% \end{IEEEeqnarray*}
% Thus $d_u(f,g) \le d_u(f,g) + d_u(g,h) - 2\epsilon$.
% Taking $\epsilon \to 0$ yields the triangle inequality.
%
% \item $\cC(X,Y)$ is a Polish space:
% \todo{handwritten solution}
%
% \begin{itemize}
% \item $d_u$ is a complete metric:
%
% Let $(f_n)_n$ be a Cauchy series with respect to $d_u$.
%
% Then clearly $(f_n(x))_n$ is a Cauchy sequence with respect
% to $d$ for every $x$.
% Hence there exists a pointwise limit $f$ of the $f_n$.
% We need to show that $f$ is continuous.
%
% %\todo{something something uniform convergence theorem}
%
% \item $(\cC(X,Y), d_u)$ is separable:
%
% Since $Y$ is separable, there exists a countable
% dense subset $S \subseteq Y$.
%
% Consider $\cC(X,S) \subseteq \cC(X,Y)$.
% Take some $f \in \cC(X,Y)$.
% Since $X$ is compact,
%
%
% % TODO
%
% \end{itemize}
% \end{enumerate}
\begin{fact}
Let $X $ be a compact Hausdorff space.
Then the following are equivalent:
@ -174,7 +205,7 @@ S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
Let $X$ be compact Polish\footnote{compact metrisable $\implies$ compact Polish}
and $Y $ Polish.
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
Consider the \vocab{uniform metric} $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
Clearly $d_u$ is a metric.
\begin{claim}
@ -212,7 +243,7 @@ Clearly $d_u$ is a metric.
for each $y \in X_m$.
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
we find $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
since $f$ is uniformly continuous.
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
We have $d_u(f,g) \le \eta$,

View file

@ -12,14 +12,6 @@
\nr 1
Let $X$ be a Polish space.
Then there exists an injection $f\colon X \to 2^\omega$
such that for each $n < \omega$,
the set $f^{-1}(\{(y_n) \in 2^\omega : y_n = 1\})$
is open.
Moreover if $V \subseteq 2^{ \omega}$ is closed,
then $f^{-1}(V)$ is $G_\delta$.
Let $(U_i)_{i < \omega}$ be a countable base of $X$.
Define
\begin{IEEEeqnarray*}{rCl}
@ -27,7 +19,6 @@ Define
x &\longmapsto & (x_i)_{i < \omega}
\end{IEEEeqnarray*}
where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise.
\gist{
Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$
is open.
We have that $f$ is injective since $X$ is T1.
@ -60,21 +51,17 @@ Since $2^{n} \setminus \left( \prod_{i < n} X_i \right)$
is finite, we get that
$f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
is $G_\delta$ as a finite union of $G_{\delta}$ sets.
}{}
\nr 2
Let $X$ be a Polish space. Then $X$ is homeomorphic to a closed subspace of $\R^{ \omega}$ :
\todo{handwritten solution}
% \begin{itemize}
% \item
% Let $f(x^{(i)})$ be a sequence in $f(X)$.
% Suppose that $f(x^{(i)}) \to y$.
% We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
% Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
% Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
% \end{itemize}
(b)
Let $f(x^{(i)})$ be a sequence in $f(X)$.
Suppose that $f(x^{(i)}) \to y$.
We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
\nr 3
@ -143,13 +130,6 @@ Let $X$ be a Polish space. Then $X$ is homeomorphic to a closed subspace of $\R^
\end{proof}
\nr 4
Define
\begin{IEEEeqnarray*}{rCl}
f\colon \omega^{\omega} &\longrightarrow & 2^\omega \\
(x_n)&\longmapsto & 0^{x_0} 1 0^{x_1} 1 \ldots.
\end{IEEEeqnarray*}
\begin{enumerate}[(1)]
\item $f$ is a topological embedding:
Consider a basic open set

View file

@ -8,7 +8,7 @@ Let $A \neq \emptyset$ be discrete.
For $D \subseteq A^{\omega}$,
let
\[
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}.
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}..
\]
\begin{enumerate}[(a)]
\item For any $D \subseteq A^\omega$, $T_D$ is a pruned tree:

View file

@ -63,7 +63,7 @@ Flows are always on non-empty spaces $X$.
\begin{proof}
(i) $\implies$ (ii):
Let $(Y,T)$ be a subflow of $(X,T)$.
take $y \in Y$. Then $Ty$ is dense in $X$.
take $y \in Y$. Then $Ty$ is dense in mKX.
But $Ty \subseteq Y$, so $Y$ is dense in $X$.
Since $Y$ is closed, we get $Y = X$.

View file

@ -84,12 +84,11 @@ with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$.
\nr 4
% Examinable!
% TODO THINK!
\gist{%
% RECAP
Let $X$ be a metrizable topological space
and let $K(X) \coloneqq \{ K \subseteq X : K \text{ compact}\}$.
Let $X$ be a metrizable topological space.
Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$.
The Vietoris topology has a basis given by
$\{K \subseteq U\}$, $U$ open (type 1)
@ -104,21 +103,19 @@ $\max_{a \in A} d(a,B)$.
On previous sheets, we checked that $d_H$ is a metric.
If $X$ is separable, then so is $K(X)$.
% END RECAP
}{}
\begin{fact}
\label{fact:s12e4}
Let $(X,d)$ be a complete metric space.
Then so is $(K(X), d_H)$.
\end{fact}
\begin{refproof}{fact:s12e4}
\begin{proof}
We need to show that $(K(X), d_H)$ is complete.
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
Wlog.~$K_n \neq \emptyset$ for all $n$.
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
\text{ $U \cap K_n \neq \emptyset$ for infinitely many $n$}\}$.
\text{ $X$ intersects $K_n$ for infinitely many $n$}\}$.
Equivalently,
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
@ -126,12 +123,12 @@ Then so is $(K(X), d_H)$.
(A cluster point is a limit of some subsequence).
\begin{claim}
\label{fact:s12e4:c1}
$K_n \to K$.
\end{claim}
\begin{refproof}{fact:s12e4:c1}
\begin{subproof}
Note that $K$ is closed (the complement is open).
\begin{claim}
$K \neq \emptyset$.
\end{claim}
@ -162,7 +159,7 @@ Then so is $(K(X), d_H)$.
space, it is complete.
So it suffices to show that $K$ is totally bounded.
Let $\epsilon > 0$.
Let $\epsilon > 0$
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
for all $i,j \ge N$.
@ -203,8 +200,9 @@ Then so is $(K(X), d_H)$.
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
(same trick as before).
\end{refproof}
\end{refproof}
\end{subproof}
\end{proof}
\begin{fact}
If $X$ is compact metrisable,
@ -225,3 +223,9 @@ Then so is $(K(X), d_H)$.
% TODO complete and totally bounded Sutherland metric and topological spaces

View file

@ -2,7 +2,7 @@
\tutorial{15}{2024-01-31}{Additions}
The following is not relevant for the exam,
but aims to give a more general picture.
but gives a more general picture.
Let $X$ be a topological space
and let $\cF$ be a filter on $ X$.
@ -12,7 +12,6 @@ all sets containing an open neighbourhood of $x$,
is contained in $\cF$.
\begin{fact}
\label{fact:hdifffilterlimit}
$X$ is Hausdorff iff every filter has at most one limit point.
\end{fact}
\begin{proof}
@ -22,7 +21,6 @@ is contained in $\cF$.
\end{proof}
\begin{fact}
\label{fact:compactiffufconv}
$X$ is (quasi-) compact
iff every ultrafilter converges.
\end{fact}
@ -31,7 +29,7 @@ is contained in $\cF$.
Let $\cU$ be an ultrafilter.
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
of closed sets.
By the FIP we get that there exist
By the FIP we geht that there exist
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
Let $N$ be an open neighbourhood of $c$.
If $N^c \in \cU$, then $c \in N^c \lightning$
@ -71,19 +69,17 @@ so is $f(\cB)$.
\end{fact}
\begin{proof}
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
The RHS is a dense closed set, i.e.~the entire space.
\end{proof}
We can uniquely extend a continuous $f\colon X \to Y$
We can uniquely extend $f\colon X \to Y$ continuous
to a continuous $\overline{f}\colon \beta X \to Y$
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
% Let $V$ be an open neighbourhood of $y \in \overline{f}\left( U \right)$.
% Consider $f^{-1}(V)$.
% Then
% \[
% \{\cF \in \beta\N : \cF \ni f^{-1}(V)\}
% \]
% is a basic open set.
Let $V$ be an open neighbourhood of $Y$ in $\overline{f}\left( U) \right) $.
Consider $f^{-1}(V)$.
Consider the basic open set
\[
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
\]
\todo{I missed the last 5 minutes}