Kuratowski-Ulam gist
This commit is contained in:
parent
9d601c2e62
commit
fbf52d882a
8 changed files with 105 additions and 53 deletions
|
@ -164,8 +164,10 @@
|
|||
\]
|
||||
\end{notation}
|
||||
|
||||
\gist{%
|
||||
The following similar to Fubini,
|
||||
but for meager sets:
|
||||
}{}
|
||||
|
||||
\begin{theorem}[Kuratowski-Ulam]
|
||||
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
||||
|
@ -193,6 +195,7 @@ but for meager sets:
|
|||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{refproof}{thm:kuratowskiulam}
|
||||
\gist{
|
||||
(ii) and (iii) are equivalent by passing to the complement.
|
||||
|
||||
\begin{claim}%[1a]
|
||||
|
@ -286,16 +289,11 @@ but for meager sets:
|
|||
$M_x$ is comeager
|
||||
as a countable intersection of comeager sets.
|
||||
\end{refproof}
|
||||
}{}
|
||||
|
||||
|
||||
% \phantom\qedhere
|
||||
% \end{refproof}
|
||||
% TODO fix claim numbers
|
||||
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
Suppose that $A$ has the BP.
|
||||
Then there is an open $U$ such that
|
||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
||||
Then $A = U \symdif M$.
|
||||
\end{remark}
|
||||
}{}
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
\lecture{06}{2023-11-03}{}
|
||||
|
||||
\gist{%
|
||||
% \begin{refproof}{thm:kuratowskiulam}
|
||||
\begin{enumerate}[(i)]
|
||||
\item Let $A$ be a set with the Baire Property.
|
||||
\item Let $A$ be a set with the Baire property.
|
||||
Write $A = U \symdif M$
|
||||
for $U$ open and $M$ meager.
|
||||
Then for all $x$,
|
||||
|
@ -51,8 +51,8 @@
|
|||
Towards a contradiction suppose that $A$ is not meager.
|
||||
Then $U$ is not meager.
|
||||
Since $X \times Y$ is second countable,
|
||||
we have that $A$ is a countable union of open rectangles.
|
||||
At least one of them, say $G \times H \subseteq A$,
|
||||
we have that $U$ is a countable union of open rectangles.
|
||||
At least one of them, say $G \times H \subseteq U$,
|
||||
is not meager.
|
||||
By \yaref{thm:kuratowskiulam:c2},
|
||||
both $G$ and $H$ are not meager.
|
||||
|
@ -71,7 +71,59 @@
|
|||
``$\implies$''
|
||||
This is \yaref{thm:kuratowskiulam:c1b}.
|
||||
\end{enumerate}
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item (ii) $\iff$ (iii): pass to complement.
|
||||
\item $F \overset{\text{closed}}{\subseteq} X \times Y$ nwd.
|
||||
$\implies \{x \in X : F_x \text{ nwd}\} $ comeager:
|
||||
\begin{itemize}
|
||||
\item $W = F^c$ is open and dense, show that $\{x : W_x \text{ dense}\}$
|
||||
is comeager.
|
||||
\item $(V_n)$ enumeration of basis. Show that $U_n \coloneqq \{x : V_n \cap W_x \neq \emptyset\}$
|
||||
is comeager for all $n$.
|
||||
\item $U_n$ is open (projection of open) and dense ($W$ is dense, hence $W \cap ( U \times V_n) \neq \emptyset$ for $U$ open).
|
||||
\end{itemize}
|
||||
\item $F \subseteq X \times Y$ is nwd $\implies \{x \in X: F_x \text{ nwd}\}$ comeager.
|
||||
(consider $\overline{F}$).
|
||||
\item (ii) $\implies$:
|
||||
$M \subseteq X \times Y$ meager $\implies \{x \in X: M_x \text{ meager}\}$ comeager
|
||||
(write $M$ as ctbl. union of nwd.)
|
||||
\item (i): If $A$ has the Baire Property,
|
||||
then $A = U \symdif M$, $A_x = U_x \symdif M_x$,
|
||||
$U_x$ open and $\{x : M_x \text{ meager}\}$ comeager
|
||||
$\implies$ (i).
|
||||
\item $P \subseteq X$, $Q \subseteq Y$ BP,
|
||||
then $P \times Q$ meager $\iff$ $P$ or $Q$ meager.
|
||||
\begin{itemize}
|
||||
\item $\impliedby$ easy
|
||||
\item $\implies$ Suppose $P \times Q$ meager, $P$ not meager.
|
||||
$\emptyset\neq P \cap \underbrace{\{x : (P \times Q)_x \text{ meager} \}}_{\text{comeager}} \ni x$.
|
||||
$(P \times Q)_x = Q$ is meager.
|
||||
\end{itemize}
|
||||
\item (ii) $\impliedby$:
|
||||
\begin{itemize}
|
||||
\item $A$ BP, $\{x : A_x \text{ meager}\}$ comeager.
|
||||
\item $A = U \symdif M$.
|
||||
\item Suppose $A$ not meager $\leadsto$ $U$ not meager
|
||||
$\leadsto \exists G \times H \subseteq U$ not meager.
|
||||
\item $G$ and $H$ are not meager.
|
||||
\item $\exists x_0 \in G \cap \underbrace{\{x: A_x \text{ meager } \land M_x \text{ meager}\}}_\text{comeager}$.
|
||||
\item $H$ meager, as
|
||||
\[
|
||||
H \subseteq U_{x_0} \subseteq A_{x_0} \cup M_{x_0}.
|
||||
\]
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
}
|
||||
\end{refproof}
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
Suppose that $A$ has the BP.
|
||||
Then there is an open $U$ such that
|
||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
||||
Then $A = U \symdif M$.
|
||||
\end{remark}
|
||||
}{}
|
||||
|
||||
\section{Borel sets} % TODO: fix chapters
|
||||
|
||||
|
|
|
@ -20,9 +20,6 @@
|
|||
\end{remark}
|
||||
}{}
|
||||
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
We will be studying projections to the first $d$ coordinates,
|
||||
i.e.
|
||||
\[
|
||||
|
@ -49,6 +46,9 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
|
|||
coordinates.
|
||||
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
|
||||
\begin{lemma}
|
||||
\label{lem:lec20:1}
|
||||
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
||||
|
|
|
@ -146,9 +146,7 @@ For this we define
|
|||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||
\item Minimality:%
|
||||
\gist{%
|
||||
\footnote{This is not relevant for the exam.}
|
||||
|
||||
\notexaminable{%
|
||||
Let $\langle E_n : n < \omega \rangle$
|
||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||
|
||||
|
@ -165,11 +163,10 @@ For this we define
|
|||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||
Since the flow is distal, it suffices to show
|
||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||
}{ Not relevant for the exam.}
|
||||
}
|
||||
|
||||
\item The order of the flow is $\eta$:%
|
||||
\gist{%
|
||||
\footnote{This is not relevant for the exam.}
|
||||
\notexaminable{%
|
||||
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||
Consider the flows we get from $(f_i)_{i < j}$
|
||||
resp.~$(f_i)_{i \le j}$
|
||||
|
@ -193,6 +190,6 @@ For this we define
|
|||
\end{IEEEeqnarray*}
|
||||
Beleznay and Foreman show that this is open and dense.%
|
||||
% TODO similarities to the lemma used today
|
||||
}{ Not relevant for the exam.}
|
||||
}
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
|
|
|
@ -70,7 +70,8 @@
|
|||
\begin{notation}
|
||||
In this case we write $x = \ulim{\cU}_n x_n$.
|
||||
\end{notation}
|
||||
\begin{refproof}{lem:ultrafilterlimit}[sketch]
|
||||
\begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works
|
||||
for metric spaces.}
|
||||
Whenever we write $X = Y \cup Z$
|
||||
we have $(\cU n) x_n \in Y$
|
||||
or $(\cU n) x_n \in Z$.
|
||||
|
@ -120,15 +121,14 @@ This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
|
|||
|
||||
This is not commutative,
|
||||
but associative and $a \mapsto a + b$ is continuous
|
||||
for a fixed $b$.
|
||||
This is called a left compact topological semigroup.
|
||||
|
||||
for a fixed $b$,
|
||||
i.e.~it is a left compact topological semigroup.
|
||||
|
||||
|
||||
|
||||
Let $X$ be a compact Hausdorff space
|
||||
and let $T \colon X \to X$ be continuous.%
|
||||
\footnote{Note that this need not be a homeomorphism, i.e.~we only get a $\N$-action
|
||||
\footnote{Note that this may not be a homeomorphism, i.e.~we only get a $\N$-action
|
||||
but not a $\Z$-action.}
|
||||
|
||||
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
||||
|
|
|
@ -132,6 +132,12 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
% TODO general fact: continuous functions agreeing on a dense set
|
||||
% agree everywhere (fact section)
|
||||
\end{proof}
|
||||
\begin{trivial}+
|
||||
More generally,
|
||||
$\beta$ is a functor from the category of topological
|
||||
spaces to the category of compact Hausdorff spaces.
|
||||
It is left adjoint to the inclusion functor.
|
||||
\end{trivial}
|
||||
|
||||
% RECAP
|
||||
\gist{%
|
||||
|
|
|
@ -84,11 +84,12 @@ with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$.
|
|||
\nr 4
|
||||
|
||||
% Examinable!
|
||||
% TODO THINK!
|
||||
|
||||
\gist{%
|
||||
% RECAP
|
||||
Let $X$ be a metrizable topological space.
|
||||
|
||||
Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$.
|
||||
Let $X$ be a metrizable topological space
|
||||
and let $K(X) \coloneqq \{ K \subseteq X : K \text{ compact}\}$.
|
||||
|
||||
The Vietoris topology has a basis given by
|
||||
$\{K \subseteq U\}$, $U$ open (type 1)
|
||||
|
@ -103,19 +104,21 @@ $\max_{a \in A} d(a,B)$.
|
|||
On previous sheets, we checked that $d_H$ is a metric.
|
||||
If $X$ is separable, then so is $K(X)$.
|
||||
% END RECAP
|
||||
}{}
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:s12e4}
|
||||
Let $(X,d)$ be a complete metric space.
|
||||
Then so is $(K(X), d_H)$.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
\begin{refproof}{fact:s12e4}
|
||||
We need to show that $(K(X), d_H)$ is complete.
|
||||
|
||||
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
|
||||
Wlog.~$K_n \neq \emptyset$ for all $n$.
|
||||
|
||||
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
|
||||
\text{ $X$ intersects $K_n$ for infinitely many $n$}\}$.
|
||||
\text{ $U \cap K_n \neq \emptyset$ for infinitely many $n$}\}$.
|
||||
|
||||
Equivalently,
|
||||
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
|
||||
|
@ -123,12 +126,12 @@ Then so is $(K(X), d_H)$.
|
|||
(A cluster point is a limit of some subsequence).
|
||||
|
||||
\begin{claim}
|
||||
\label{fact:s12e4:c1}
|
||||
$K_n \to K$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
\begin{refproof}{fact:s12e4:c1}
|
||||
Note that $K$ is closed (the complement is open).
|
||||
|
||||
|
||||
\begin{claim}
|
||||
$K \neq \emptyset$.
|
||||
\end{claim}
|
||||
|
@ -159,7 +162,7 @@ Then so is $(K(X), d_H)$.
|
|||
space, it is complete.
|
||||
|
||||
So it suffices to show that $K$ is totally bounded.
|
||||
Let $\epsilon > 0$
|
||||
Let $\epsilon > 0$.
|
||||
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
|
||||
for all $i,j \ge N$.
|
||||
|
||||
|
@ -200,9 +203,8 @@ Then so is $(K(X), d_H)$.
|
|||
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
|
||||
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
|
||||
(same trick as before).
|
||||
\end{subproof}
|
||||
|
||||
\end{proof}
|
||||
\end{refproof}
|
||||
\end{refproof}
|
||||
|
||||
\begin{fact}
|
||||
If $X$ is compact metrisable,
|
||||
|
@ -223,9 +225,3 @@ Then so is $(K(X), d_H)$.
|
|||
|
||||
|
||||
% TODO complete and totally bounded Sutherland metric and topological spaces
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
\tutorial{15}{2024-01-31}{Additions}
|
||||
|
||||
The following is not relevant for the exam,
|
||||
but gives a more general picture.
|
||||
but aims to give a more general picture.
|
||||
|
||||
Let $X$ be a topological space
|
||||
and let $\cF$ be a filter on $ X$.
|
||||
|
@ -21,6 +21,7 @@ is contained in $\cF$.
|
|||
\end{proof}
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:compactiffufconv}
|
||||
$X$ is (quasi-) compact
|
||||
iff every ultrafilter converges.
|
||||
\end{fact}
|
||||
|
@ -29,7 +30,7 @@ is contained in $\cF$.
|
|||
Let $\cU$ be an ultrafilter.
|
||||
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
|
||||
of closed sets.
|
||||
By the FIP we geht that there exist
|
||||
By the FIP we get that there exist
|
||||
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
|
||||
Let $N$ be an open neighbourhood of $c$.
|
||||
If $N^c \in \cU$, then $c \in N^c \lightning$
|
||||
|
@ -69,17 +70,19 @@ so is $f(\cB)$.
|
|||
\end{fact}
|
||||
\begin{proof}
|
||||
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
|
||||
The RHS is a dense closed set, i.e.~the entire space.
|
||||
\end{proof}
|
||||
|
||||
We can uniquely extend $f\colon X \to Y$ continuous
|
||||
We can uniquely extend a continuous $f\colon X \to Y$
|
||||
to a continuous $\overline{f}\colon \beta X \to Y$
|
||||
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
|
||||
|
||||
Let $V$ be an open neighbourhood of $Y$ in $\overline{f}\left( U) \right) $.
|
||||
Consider $f^{-1}(V)$.
|
||||
Consider the basic open set
|
||||
\[
|
||||
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
|
||||
\]
|
||||
% Let $V$ be an open neighbourhood of $y \in \overline{f}\left( U \right)$.
|
||||
% Consider $f^{-1}(V)$.
|
||||
% Then
|
||||
% \[
|
||||
% \{\cF \in \beta\N : \cF \ni f^{-1}(V)\}
|
||||
% \]
|
||||
% is a basic open set.
|
||||
|
||||
\todo{I missed the last 5 minutes}
|
||||
|
|
Loading…
Reference in a new issue