Endgame-Analyzer/game_state.h

298 lines
8.9 KiB
C
Raw Normal View History

2023-08-04 16:28:41 +02:00
#ifndef DYNAMIC_PROGRAM_GAME_STATE_H
#define DYNAMIC_PROGRAM_GAME_STATE_H
#include <array>
#include <stack>
2023-08-04 16:28:41 +02:00
#include <cstdint>
#include <algorithm>
#include <cstddef>
#include <unordered_map>
2023-08-04 16:28:41 +02:00
#include <bitset>
#include <limits>
#include <optional>
#include <boost/container/static_vector.hpp>
#include <list>
#include <ostream>
2023-08-10 11:14:15 +02:00
#include <boost/rational.hpp>
2023-08-04 16:28:41 +02:00
namespace Hanabi {
using rank_t = std::uint8_t;
using suit_t = std::uint8_t;
using clue_t = std::uint8_t;
using player_t = std::uint8_t;
using hand_index_t = std::uint8_t;
2023-08-10 11:14:15 +02:00
using probability_t = boost::rational<unsigned long>;
2023-08-04 16:28:41 +02:00
using state_t = std::uint32_t;
2023-08-04 16:28:41 +02:00
/**
* We will generally assume that stacks are played from n to 0
* Playing a 0 will yield a clue
* Therefore, for the default hanabi, we will play 4,3,2,1,0 in that order
* on each stack. A stack with no cards played implicitly has value 5 on it
* This is just easier to implement, since then the remaining number of cards
* to be played is always the current number of the stack
*/
constexpr rank_t starting_card_rank = 5;
constexpr suit_t max_suit_index = 5;
constexpr size_t max_card_duplicity = 3;
constexpr clue_t max_num_clues = 8;
constexpr uint8_t not_in_starting_hand = std::numeric_limits<uint8_t>::max();
2023-08-04 16:28:41 +02:00
constexpr std::array<std::string, 6> suit_initials{"r", "y", "g", "b", "p", "t"};
2023-08-04 16:28:41 +02:00
struct Card {
suit_t suit;
rank_t rank;
uint8_t local_index;
bool in_starting_hand;
bool initial_trash;
2023-08-04 16:28:41 +02:00
Card &operator++();
2023-08-04 16:28:41 +02:00
const Card operator++(int);
auto operator<=>(const Card &) const = default;
};
}
namespace std {
template<>
struct hash<Hanabi::Card> {
std::size_t operator()(Hanabi::Card const& card) const noexcept {
return card.suit * 6 + card.rank;
}
};
}
namespace Hanabi {
2023-08-04 16:28:41 +02:00
std::ostream &operator<<(std::ostream &os, const Card &card);
2023-08-04 16:28:41 +02:00
constexpr Card r0 = {0, 0};
constexpr Card r1 = {0, 1};
constexpr Card r2 = {0, 2};
constexpr Card r3 = {0, 3};
constexpr Card r4 = {0, 4};
constexpr Card y0 = {1, 0};
constexpr Card y1 = {1, 1};
constexpr Card y2 = {1, 2};
constexpr Card y3 = {1, 3};
constexpr Card y4 = {1, 4};
constexpr Card unknown_card = {0, 6};
2023-08-04 16:28:41 +02:00
/**
* To store:
* - Draw pile size
* - Distribution of cards
* - Which cards exist?
* - Number of clues
*/
2023-08-07 10:45:11 +02:00
template <size_t num_suits>
using Stacks = std::array<rank_t, num_suits>;
2023-08-04 16:28:41 +02:00
2023-08-07 10:45:11 +02:00
template <size_t num_suits>
std::ostream& operator<<(std::ostream &os, const Stacks<num_suits> &stacks);
2023-08-04 16:28:41 +02:00
struct CardMultiplicity {
Card card;
std::uint8_t multiplicity;
auto operator<=>(const CardMultiplicity &) const = default;
2023-08-04 16:28:41 +02:00
};
2023-08-07 01:51:24 +02:00
template<typename T>
struct InnerCardArray {
template<size_t N>
using array_t = std::array<T, N>;
};
template<>
struct InnerCardArray<bool> {
template<size_t N>
using array_t = std::bitset<N>;
};
template <suit_t num_suits, typename T> struct CardArray {
using value_type = T;
2023-08-04 16:28:41 +02:00
CardArray() = default;
explicit CardArray(value_type default_val);
2023-08-04 16:28:41 +02:00
2023-08-07 01:51:24 +02:00
void fill(value_type val);
const value_type &operator[](const Card &card) const;
2023-08-05 12:19:34 +02:00
value_type &operator[](const Card &card);
auto operator<=>(const CardArray &) const = default;
2023-08-04 16:28:41 +02:00
private:
2023-08-07 01:51:24 +02:00
using inner_array_t = typename InnerCardArray<T>::template array_t<starting_card_rank>;
std::array<inner_array_t , num_suits> _array {};
2023-08-04 16:28:41 +02:00
};
2023-08-05 13:04:51 +02:00
enum class ActionType {
play = 0,
discard = 1,
clue = 2,
color_clue = 2,
rank_clue = 3,
end_game = 4,
vote_terminate = 10,
};
2023-08-04 16:28:41 +02:00
2023-08-05 13:04:51 +02:00
struct BacktrackAction {
2023-08-10 12:44:09 +02:00
explicit BacktrackAction(
ActionType action_type,
Card discarded_or_played = unknown_card,
hand_index_t index = 0,
bool was_on_8_clues = false
);
ActionType action_type{};
// The card that was discarded or played
Card discarded{};
// Index of card in hand that was discarded or played
hand_index_t index{};
2023-08-10 12:44:09 +02:00
// Indicates whether before the action was taken, we had 8 clues.
// This is important so that we know if we go back to 7 or 8 clues when we revert playing a 5
bool was_on_8_clues {false};
2023-08-04 16:28:41 +02:00
};
/** Would like to have 2 versions:
* All:
* - support playing cards, querying basic information
* - support going back, but with a different interface: efficient (needs arguments, does not store) or using a stack
*
*/
class HanabiStateIF {
public:
2023-08-10 11:14:15 +02:00
virtual probability_t backtrack(size_t depth) = 0;
virtual void clue() = 0;
virtual void discard(hand_index_t index) = 0;
virtual void play(hand_index_t index) = 0;
[[nodiscard]] virtual hand_index_t find_card_in_hand(const Card& card) const = 0;
[[nodiscard]] virtual bool is_trash(const Card& card) const = 0;
[[nodiscard]] virtual bool is_playable(const Card& card) const = 0;
2023-08-08 00:31:16 +02:00
[[nodiscard]] virtual size_t draw_pile_size() const = 0;
[[nodiscard]] virtual std::uint64_t enumerated_states() const = 0;
2023-08-10 11:14:15 +02:00
[[nodiscard]] virtual std::unordered_map<unsigned long, probability_t> visited_states() const = 0;
virtual void normalize_draw_and_positions() = 0;
virtual ~HanabiStateIF() = default;
protected:
virtual void print(std::ostream& os) const = 0;
friend std::ostream& operator<<(std::ostream&, HanabiStateIF const&);
};
template <suit_t num_suits, player_t num_players, hand_index_t hand_size>
class HanabiState : public HanabiStateIF {
2023-08-04 16:28:41 +02:00
public:
2023-08-05 12:19:34 +02:00
HanabiState() = default;
explicit HanabiState(const std::vector<Card>& deck);
2023-08-10 11:14:15 +02:00
probability_t backtrack(size_t depth) final;
2023-08-06 11:54:57 +02:00
void clue() final;
void play(hand_index_t index) final;
void discard(hand_index_t index) final;
2023-08-05 12:19:34 +02:00
2023-08-07 10:36:03 +02:00
void revert_clue();
2023-08-10 12:44:09 +02:00
void revert_play();
void revert_discard();
2023-08-05 12:19:34 +02:00
[[nodiscard]] hand_index_t find_card_in_hand(const Card& card) const final;
[[nodiscard]] bool is_trash(const Card& card) const final;
[[nodiscard]] bool is_playable(const Card& card) const final;
2023-08-08 00:31:16 +02:00
[[nodiscard]] size_t draw_pile_size() const final;
2023-08-05 12:19:34 +02:00
[[nodiscard]] std::uint64_t enumerated_states() const final;
2023-08-10 11:14:15 +02:00
[[nodiscard]] std::unordered_map<unsigned long, probability_t> visited_states() const final;
void normalize_draw_and_positions() final;
auto operator<=>(const HanabiState &) const = default;
2023-08-05 12:19:34 +02:00
protected:
void print(std::ostream& os) const final;
2023-08-04 16:28:41 +02:00
private:
template<bool update_card_positions> unsigned long play_and_potentially_update(hand_index_t index);
template<bool update_card_positions> unsigned long discard_and_potentially_update(hand_index_t index);
2023-08-07 00:06:50 +02:00
template<bool update_card_positions> unsigned long draw(hand_index_t index);
void revert_draw(hand_index_t index, Card discarded_card);
2023-08-05 12:19:34 +02:00
void update_tablebase(unsigned long id, probability_t probability);
template<bool play, class Function>
void do_for_each_potential_draw(hand_index_t index, Function f);
2023-08-05 12:19:34 +02:00
void incr_turn();
void decr_turn();
static constexpr uint8_t no_endgame = std::numeric_limits<uint8_t>::max();
static constexpr player_t draw_pile = num_players;
static constexpr player_t trash_or_play_stack = num_players + 1;
std::uint64_t unique_id() const;
2023-08-05 12:19:34 +02:00
player_t _turn{};
clue_t _num_clues{};
2023-08-06 11:54:57 +02:00
std::uint8_t _weighted_draw_pile_size{};
2023-08-05 12:19:34 +02:00
Stacks<num_suits> _stacks{};
std::array<std::array<Card, hand_size>, num_players> _hands{};
2023-08-05 12:19:34 +02:00
std::list<CardMultiplicity> _draw_pile{};
std::uint8_t _endgame_turns_left{};
2023-08-05 12:19:34 +02:00
2023-08-10 14:07:18 +02:00
// This will save the card positions of all cards that are in the draw pile when we start backtracking.
boost::container::static_vector<boost::container::static_vector<player_t, max_card_duplicity>, 10> _card_positions_draw;
2023-08-10 14:07:18 +02:00
// Note that 30 cards here is enough for all standard decks, since there are ot most 6 suits with 5 unique cards each.
boost::container::static_vector<Card, 30> _good_cards_draw;
2023-08-07 01:51:24 +02:00
// This will indicate whether cards that were in hands initially still are in hands
std::bitset<num_players * hand_size> _card_positions_hands;
size_t _num_useful_cards_in_starting_hands{};
size_t _initial_draw_pile_size{};
2023-08-07 01:51:24 +02:00
2023-08-05 12:19:34 +02:00
// further statistics that we might want to keep track of
int8_t _pace{};
2023-08-06 11:54:57 +02:00
uint8_t _score{};
2023-08-05 12:19:34 +02:00
2023-08-06 15:02:50 +02:00
std::uint64_t _enumerated_states {};
2023-08-10 11:14:15 +02:00
std::unordered_map<unsigned long, probability_t> _position_tablebase;
std::stack<BacktrackAction> _actions_log;
2023-08-05 12:19:34 +02:00
};
2023-08-04 16:28:41 +02:00
2023-08-06 14:06:41 +02:00
template <std::size_t num_suits, player_t num_players, std::size_t hand_size>
bool same_up_to_discard_permutation(HanabiState<num_suits, num_players, hand_size> state1, HanabiState<num_suits, num_players, hand_size> state2) {
auto comp = [](CardMultiplicity &m1, CardMultiplicity &m2) -> bool {
return m1.card.suit < m2.card.suit || (m1.card.suit == m2.card.suit and m1.card.rank < m2.card.rank) ||
(m1.card.suit == m2.card.suit and m1.card.rank == m2.card.rank and m1.multiplicity < m2.multiplicity);
};
state1._draw_pile.sort(comp);
state2._draw_pile.sort(comp);
return state1 == state2;
}
2023-08-04 16:28:41 +02:00
}
2023-08-05 11:55:46 +02:00
#include "game_state.hpp"
#endif // DYNAMIC_PROGRAM_GAME_STATE_H