implement backtracking approach

This commit is contained in:
Maximilian Keßler 2023-08-06 11:54:57 +02:00
parent b690f43a73
commit bdab3f3b43
Signed by: max
GPG Key ID: BCC5A619923C0BA5
4 changed files with 136 additions and 21 deletions

View File

@ -135,7 +135,7 @@ namespace Download {
}
template <std::size_t num_suits, Hanabi::player_t num_players, std::size_t hand_size>
void get_game(std::variant<int, const char *> game_spec, unsigned turn) {
Hanabi::HanabiState<num_suits, num_players, hand_size> get_game(std::variant<int, const char *> game_spec, unsigned turn) {
const boost::json::object game_json = [&game_spec]() {
if (game_spec.index() == 0) {
return download_game_json(std::get<int>(game_spec));
@ -150,7 +150,7 @@ namespace Download {
auto game = produce_state<num_suits, num_players, hand_size>(deck, actions, turn);
game.normalize_draw_and_positions();
std::cout << game << std::endl;
return game;
}

View File

@ -132,8 +132,12 @@ enum class ActionType {
struct BacktrackAction {
ActionType type{};
// The card that was discarded or played
Card discarded{};
// Index of card in hand that was discarded or played
std::uint8_t index{};
// Multiplicity of new draw (needed for probability calculations)
std::uint8_t multiplicity{};
};
template <std::size_t num_suits, player_t num_players, std::size_t hand_size>
@ -142,6 +146,8 @@ public:
HanabiState() = default;
explicit HanabiState(const std::vector<Card>& deck);
double backtrack();
BacktrackAction clue();
/**
@ -158,7 +164,7 @@ public:
void revert(const BacktrackAction &action);
void draw(std::uint8_t index);
uint8_t draw(uint8_t index);
void revert_draw(std::uint8_t index, Card card);
@ -166,16 +172,21 @@ public:
void decr_turn();
bool is_trash(const Card& card) const;
bool is_playable(const Card& card) const;
player_t _turn{};
clue_t _num_clues{};
std::uint8_t _draw_pile_size{};
std::uint8_t _weighted_draw_pile_size{};
Stacks<num_suits> _stacks{};
std::array<std::array<Card, hand_size>, num_players> _hands{};
CardArray<num_suits, player_t> _card_positions{};
std::list<CardMultiplicity> _draw_pile{};
std::uint8_t endgame_turns_left;
// further statistics that we might want to keep track of
uint8_t _pace{};
uint8_t _score{};
auto operator<=>(const HanabiState &) const = default;
};

View File

@ -61,11 +61,13 @@ namespace Hanabi {
HanabiState<num_suits, num_players, hand_size>::HanabiState(const std::vector<Card> &deck):
_turn(0),
_num_clues(max_num_clues),
_draw_pile_size(deck.size() - num_players * hand_size),
_weighted_draw_pile_size(deck.size() - num_players * hand_size),
_stacks(),
_hands(),
_card_positions(draw_pile),
_draw_pile() {
_draw_pile(),
_pace(deck.size() - 5 * num_suits - num_players * (hand_size - 1)),
_score(0) {
std::ranges::fill(_stacks, starting_card_rank);
for(const Card& card: deck) {
_draw_pile.push_back({card, 1});
@ -92,11 +94,27 @@ namespace Hanabi {
template<size_t num_suits, player_t num_players, size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::incr_turn() {
_turn = (_turn + 1) % num_players;
if(endgame_turns_left != -1) {
endgame_turns_left--;
}
}
template<size_t num_suits, player_t num_players, size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::decr_turn() {
_turn = (_turn + num_players - 1) % num_players;
if (endgame_turns_left != -1) {
endgame_turns_left++;
}
}
template<size_t num_suits, player_t num_players, size_t hand_size>
bool HanabiState<num_suits, num_players, hand_size>::is_playable(const Hanabi::Card &card) const {
return card.rank == _stacks[card.suit] - 1;
}
template<size_t num_suits, player_t num_players, size_t hand_size>
bool HanabiState<num_suits, num_players, hand_size>::is_trash(const Hanabi::Card &card) const {
return card.rank >= _stacks[card.suit];
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
@ -107,31 +125,32 @@ namespace Hanabi {
assert(card.rank == _stacks[card.suit] - 1);
--_stacks[card.suit];
_score++;
BacktrackAction ret{ActionType::play, _hands[_turn][index], index};
BacktrackAction ret{ActionType::play, _hands[_turn][index], index, 0};
if (card.rank == 0) {
// update clues if we played the last card of a stack
_num_clues++;
}
draw(index);
ret.multiplicity = draw(index);
incr_turn();
return ret;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
BacktrackAction HanabiState<num_suits, num_players, hand_size>::discard(
std::uint8_t index) {
BacktrackAction HanabiState<num_suits, num_players, hand_size>::discard(std::uint8_t index) {
assert(index < _hands[_turn].size());
assert(_num_clues != max_num_clues);
_num_clues++;
_pace--;
BacktrackAction ret{ActionType::discard, _hands[_turn][index], index};
draw(index);
ret.multiplicity = draw(index);
incr_turn();
return ret;
@ -171,7 +190,7 @@ namespace Hanabi {
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::draw(std::uint8_t index) {
std::uint8_t HanabiState<num_suits, num_players, hand_size>::draw(uint8_t index) {
assert(index < _hands[_turn].size());
const Card& discarded = _hands[_turn][index];
@ -181,24 +200,36 @@ namespace Hanabi {
// draw a new card if the draw pile is not empty
if (!_draw_pile.empty()) {
--_draw_pile_size;
CardMultiplicity draw = _draw_pile.front();
--_weighted_draw_pile_size;
const CardMultiplicity draw = _draw_pile.front();
_draw_pile.pop_front();
assert(draw.multiplicity > 0);
if (draw.multiplicity > 1) {
draw.multiplicity--;
_draw_pile.push_back(draw);
_draw_pile.back().multiplicity--;
}
draw.card.copy = draw.multiplicity - 1;
_hands[_turn][index] = draw.card;
Card& card_in_hand = _hands[_turn][index];
card_in_hand = draw.card;
card_in_hand.copy = draw.multiplicity - 1;
if (_stacks[draw.card.suit] > draw.card.rank) {
_card_positions[draw.card] = _turn;
_card_positions[card_in_hand] = _turn;
}
if(_draw_pile.empty()) {
endgame_turns_left = num_players;
}
return draw.multiplicity;
}
return 0;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::revert_draw(std::uint8_t index, Card card) {
endgame_turns_left = -1;
assert(index < _hands[_turn].size());
const Card& discarded = _hands[_turn][index];
if (_stacks[discarded.suit] > discarded.rank) {
@ -216,7 +247,7 @@ namespace Hanabi {
if (_stacks[card.suit] > card.rank) {
_card_positions[card] = _turn;
}
_draw_pile_size++;
_weighted_draw_pile_size++;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
@ -277,6 +308,7 @@ namespace Hanabi {
case ActionType::discard:
assert(_num_clues > 0);
_num_clues--;
_pace++;
revert_draw(action.index, action.discarded);
break;
case ActionType::play:
@ -285,9 +317,76 @@ namespace Hanabi {
}
revert_draw(action.index, action.discarded);
_stacks[action.discarded.suit]++;
_score--;
default:
break;
}
}
#define UPDATE_PROBABILITY(new_probability) \
best_probability = std::max(best_probability, new_probability); \
if (best_probability == 1) { \
return best_probability; \
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
double HanabiState<num_suits, num_players, hand_size>::backtrack() {
std::cout << *this << std::endl;
if (_score == 5 * num_suits) {
return 1;
}
if(_pace < 0 || endgame_turns_left == 0) {
return 0;
}
// TODO: Have some endgame analysis here?
// First, check if we have any playable cards
double best_probability = 0;
const std::array<Card, hand_size> hand = _hands[_turn];
// First, check for playables
for(std::uint8_t index = 0; index < hand_size; index++) {
if(is_playable(hand[index])) {
double sum_of_probabilities = 0;
for(size_t i = 0; i < _draw_pile.size(); i++) {
BacktrackAction action = play(index);
sum_of_probabilities += backtrack() * action.multiplicity;
revert(action);
}
const double probability_for_this_play = sum_of_probabilities / _weighted_draw_pile_size;
UPDATE_PROBABILITY(probability_for_this_play);
}
}
// Check for discards now
if(_pace > 0) {
for(std::uint8_t index = 0; index < hand_size; index++) {
if (is_trash(hand[index])) {
double sum_of_probabilities = 0;
for(size_t i = 0; i < _draw_pile.size(); i++) {
BacktrackAction action = discard(index);
sum_of_probabilities += backtrack() * action.multiplicity;
revert(action);
}
const double probability_discard = sum_of_probabilities / _weighted_draw_pile_size;
UPDATE_PROBABILITY(probability_discard);
// All discards are equivalent, do not continue searching for different trash
break;
}
}
}
// Last option is to stall
if(_num_clues > 0) {
BacktrackAction action = clue();
const double probability_stall = backtrack();
revert(action);
UPDATE_PROBABILITY(probability_stall);
}
return best_probability;
}
} // namespace Hanabi

View File

@ -22,7 +22,7 @@ void test_game() {
state._hands[0] = {y0, y1, y2, r0, r1};
state._hands[1] = {r1, r1, y1, r3, r2};
state._card_positions[r1] = 0;
state._draw_pile_size = 1;
state._weighted_draw_pile_size = 1;
auto state2 = state;
@ -38,7 +38,12 @@ void test_game() {
assert(state == state2);
}
void download() { Download::get_game<6,3,5>("1004116.json", 40); }
void download() {
auto game = Download::get_game<6,3,5>("1004116.json", 40);
std::cout << game << std::endl;
auto res = game.backtrack();
std::cout << res << std::endl;
}
void print_sizes() {
std::cout << "size of card -> hand map: " << sizeof(HanabiState<5, 3, 4>)