keep track of probabilities in tablebase

This commit is contained in:
Maximilian Keßler 2023-08-07 12:48:25 +02:00
parent f29e3d1202
commit c394338c24
Signed by: max
GPG key ID: BCC5A619923C0BA5
3 changed files with 111 additions and 53 deletions

View file

@ -5,6 +5,7 @@
#include <cstdint>
#include <algorithm>
#include <cstddef>
#include <unordered_map>
#include <bitset>
#include <limits>
#include <optional>
@ -162,6 +163,7 @@ public:
[[nodiscard]] virtual bool is_playable(const Card& card) const = 0;
[[nodiscard]] virtual std::uint64_t enumerated_states() const = 0;
[[nodiscard]] virtual std::unordered_map<unsigned long, double> visited_states() const = 0;
virtual void normalize_draw_and_positions() = 0;
@ -194,6 +196,7 @@ public:
[[nodiscard]] bool is_playable(const Card& card) const final;
[[nodiscard]] std::uint64_t enumerated_states() const final;
[[nodiscard]] std::unordered_map<unsigned long, double> visited_states() const final;
void normalize_draw_and_positions() final;
@ -232,13 +235,17 @@ private:
// This will indicate whether cards that were in hands initially still are in hands
std::bitset<num_players * hand_size> _card_positions_hands;
uint8_t _num_useful_cards_in_starting_hands;
size_t _num_useful_cards_in_starting_hands;
size_t _initial_draw_pile_size;
// further statistics that we might want to keep track of
uint8_t _pace{};
uint8_t _score{};
std::uint64_t _enumerated_states {};
std::unordered_map<unsigned long, double> _position_tablebase;
};
template <std::size_t num_suits, player_t num_players, std::size_t hand_size>

View file

@ -7,7 +7,7 @@
namespace Hanabi {
std::ostream& operator<<(std::ostream& os, HanabiStateIF const& hanabi_state) {
std::ostream &operator<<(std::ostream &os, HanabiStateIF const &hanabi_state) {
hanabi_state.print(os);
return os;
}
@ -29,7 +29,7 @@ namespace Hanabi {
}
template<size_t num_suits>
std::ostream& operator<<(std::ostream &os, const Stacks<num_suits> &stacks) {
std::ostream &operator<<(std::ostream &os, const Stacks<num_suits> &stacks) {
for (size_t i = 0; i < stacks.size() - 1; i++) {
os << starting_card_rank - stacks[i] << ", ";
}
@ -52,36 +52,37 @@ namespace Hanabi {
}
template<suit_t num_suits, typename T>
const T& CardArray<num_suits, T>::operator[](const Card &card) const {
const T &CardArray<num_suits, T>::operator[](const Card &card) const {
return _array[card.suit][card.rank];
};
template<suit_t num_suits, typename T>
T& CardArray<num_suits, T>::operator[](const Card &card) {
T &CardArray<num_suits, T>::operator[](const Card &card) {
return _array[card.suit][card.rank];
};
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
HanabiState<num_suits, num_players, hand_size>::HanabiState(const std::vector<Card> &deck):
_turn(0),
_num_clues(max_num_clues),
_weighted_draw_pile_size(deck.size()),
_stacks(),
_hands(),
_draw_pile(),
_endgame_turns_left(no_endgame),
_card_positions_draw(),
_card_positions_hands(),
_num_useful_cards_in_starting_hands(0),
_pace(deck.size() - 5 * num_suits - num_players * (hand_size - 1)),
_score(0),
_enumerated_states(0) {
_turn(0),
_num_clues(max_num_clues),
_weighted_draw_pile_size(deck.size()),
_stacks(),
_hands(),
_draw_pile(),
_endgame_turns_left(no_endgame),
_card_positions_draw(),
_card_positions_hands(),
_num_useful_cards_in_starting_hands(0),
_initial_draw_pile_size(0),
_pace(deck.size() - 5 * num_suits - num_players * (hand_size - 1)),
_score(0),
_enumerated_states(0) {
std::ranges::fill(_stacks, starting_card_rank);
for(const Card& card: deck) {
for (const Card &card: deck) {
_draw_pile.push_back({card, 1});
}
for(player_t player = 0; player < num_players; player++) {
for(std::uint8_t index = 0; index < hand_size; index++) {
for (player_t player = 0; player < num_players; player++) {
for (std::uint8_t index = 0; index < hand_size; index++) {
draw<false>(index);
}
incr_turn();
@ -100,7 +101,7 @@ namespace Hanabi {
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::incr_turn() {
_turn = (_turn + 1) % num_players;
if(_endgame_turns_left != no_endgame) {
if (_endgame_turns_left != no_endgame) {
_endgame_turns_left--;
}
}
@ -184,12 +185,12 @@ namespace Hanabi {
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
std::uint8_t HanabiState<num_suits, num_players, hand_size>::find_card_in_hand(
const Hanabi::Card &card) const {
for(std::uint8_t i = 0; i < hand_size; i++) {
if(_hands[_turn][i].rank == card.rank && _hands[_turn][i].suit == card.suit) {
return i;
}
}
return -1;
for (std::uint8_t i = 0; i < hand_size; i++) {
if (_hands[_turn][i].rank == card.rank && _hands[_turn][i].suit == card.suit) {
return i;
}
}
return -1;
}
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
@ -220,7 +221,7 @@ namespace Hanabi {
ASSERT(index < _hands[_turn].size());
// update card position of the card we are about to discard
if constexpr(update_card_positions) {
if constexpr (update_card_positions) {
const Card discarded = _hands[_turn][index];
if (!discarded.initial_trash) {
if (discarded.in_starting_hand) {
@ -247,7 +248,7 @@ namespace Hanabi {
_draw_pile.back().multiplicity--;
}
if constexpr(update_card_positions) {
if constexpr (update_card_positions) {
// update card position of the drawn card
if (!draw.card.initial_trash) {
ASSERT(draw.card.in_starting_hand == false);
@ -259,7 +260,7 @@ namespace Hanabi {
_hands[_turn][index] = draw.card;
if(_draw_pile.empty()) {
if (_draw_pile.empty()) {
// Note the +1, since we will immediately decrement this when moving to the next player
_endgame_turns_left = num_players + 1;
}
@ -301,7 +302,8 @@ namespace Hanabi {
ASSERT(_card_positions_hands[discarded_card.local_index] == false);
_card_positions_hands[discarded_card.local_index] = true;
} else {
auto hand_card_it = std::ranges::find(_card_positions_draw[discarded_card.local_index], trash_or_play_stack);
auto hand_card_it = std::ranges::find(_card_positions_draw[discarded_card.local_index],
trash_or_play_stack);
ASSERT(hand_card_it != _card_positions_draw[discarded_card.local_index].end());
*hand_card_it = _turn;
}
@ -314,16 +316,16 @@ namespace Hanabi {
void HanabiState<num_suits, num_players, hand_size>::normalize_draw_and_positions() {
// Note that this function does not have to be particularly performant, we only call it once to initialize.
const Card trash = [this]() -> Card {
for(suit_t suit = 0; suit < num_suits; suit++) {
if(_stacks[suit] < starting_card_rank) {
for (suit_t suit = 0; suit < num_suits; suit++) {
if (_stacks[suit] < starting_card_rank) {
return {suit, starting_card_rank - 1, 0, false, true};
}
}
return {0,0};
return {0, 0};
}();
CardArray<num_suits, std::uint8_t> nums_in_draw_pile;
for(const auto [card, multiplicity] : _draw_pile) {
for (const auto [card, multiplicity]: _draw_pile) {
if (_stacks[card.suit] > card.rank) {
nums_in_draw_pile[card] += multiplicity;
} else {
@ -333,27 +335,28 @@ namespace Hanabi {
// Prepare draw pile
_draw_pile.clear();
for(suit_t suit = 0; suit < num_suits; suit++) {
for(rank_t rank = 0; rank < starting_card_rank; rank++) {
Card card {suit, rank, static_cast<uint8_t>(_card_positions_draw.size()), false, is_trash(card)};
for (suit_t suit = 0; suit < num_suits; suit++) {
for (rank_t rank = 0; rank < starting_card_rank; rank++) {
Card card{suit, rank, static_cast<uint8_t>(_card_positions_draw.size()), false, is_trash(card)};
if (nums_in_draw_pile[card] > 0) {
_draw_pile.push_back({card, nums_in_draw_pile[card]});
if(!is_trash(card)) {
if (!is_trash(card)) {
_card_positions_draw.push_back({nums_in_draw_pile[card], draw_pile});
}
}
}
}
_initial_draw_pile_size = _weighted_draw_pile_size;
// Prepare cards in hands
for(player_t player = 0; player < num_players; player++) {
for(Card& card : _hands[player]) {
for (player_t player = 0; player < num_players; player++) {
for (Card &card: _hands[player]) {
card.initial_trash = is_trash(card);
card.in_starting_hand = true;
// Needed to check for dupes in same hand
boost::container::static_vector<Card, hand_size> good_cards_in_hand;
if(!is_trash(card)) {
if(std::count(good_cards_in_hand.begin(), good_cards_in_hand.end(), card) > 0) {
if (!is_trash(card)) {
if (std::count(good_cards_in_hand.begin(), good_cards_in_hand.end(), card) > 0) {
// This card is already in hand, so just replace the second copy by some trash
card = trash;
} else {
@ -366,13 +369,14 @@ namespace Hanabi {
}
}
_card_positions_hands.reset();
for(size_t i = 0; i < _num_useful_cards_in_starting_hands; i++) {
for (size_t i = 0; i < _num_useful_cards_in_starting_hands; i++) {
_card_positions_hands[i] = true;
}
}
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::revert_play(const BacktrackAction& action, bool was_on_8_clues) {
void
HanabiState<num_suits, num_players, hand_size>::revert_play(const BacktrackAction &action, bool was_on_8_clues) {
ASSERT(!was_on_8_clues or _num_clues == 8);
decr_turn();
if (action.discarded.rank == 0 and not was_on_8_clues) {
@ -384,7 +388,7 @@ namespace Hanabi {
}
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::revert_discard(const BacktrackAction& action) {
void HanabiState<num_suits, num_players, hand_size>::revert_discard(const BacktrackAction &action) {
decr_turn();
ASSERT(_num_clues > 0);
_num_clues--;
@ -399,15 +403,26 @@ namespace Hanabi {
_num_clues++;
}
#define UPDATE_PROBABILITY(new_probability) \
best_probability = std::max(best_probability, new_probability); \
if (best_probability == 1) { \
return best_probability; \
}
#define RETURN_PROBABILITY \
if (_position_tablebase.contains(id_of_state)) { \
ASSERT(_position_tablebase[id_of_state] == best_probability); \
} else { \
_position_tablebase[id_of_state] = best_probability; \
} \
return best_probability;
#define UPDATE_PROBABILITY(new_probability) \
best_probability = std::max(best_probability, new_probability); \
if (best_probability == 1) { \
RETURN_PROBABILITY; \
}
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
double HanabiState<num_suits, num_players, hand_size>::backtrack(size_t depth) {
_enumerated_states++;
const unsigned long id_of_state = unique_id();
if (_score == 5 * num_suits) {
return 1;
}
@ -485,13 +500,48 @@ namespace Hanabi {
UPDATE_PROBABILITY(probability_stall);
}
_position_tablebase[id_of_state] = best_probability;
return best_probability;
}
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
std::uint64_t HanabiState<num_suits, num_players, hand_size>::unique_id() const {
unsigned long id = _card_positions_hands.to_ulong();
unsigned long id = 0;
// encode all positions of cards that started in draw pile
for(const auto & positions: _card_positions_draw) {
for(player_t player : positions) {
id *= num_players + 2;
id += player;
}
}
// encode number of clues
id *= max_num_clues + 1;
id += _num_clues;
// encode draw pile size
id *= _initial_draw_pile_size;
id += _weighted_draw_pile_size;
// encode positions of cards that started in hands
id = id << _num_useful_cards_in_starting_hands;
id += _card_positions_hands.to_ulong();
id *= num_players;
id += _turn;
// The id is unique now, since for all relevant cards, we know their position (including if they are played),
// the number of clues, the draw pile size and whose turn it is.
// This already uniquely determines the current players position, assuming that we never discard good cards
// (and only play them)
return id;
}
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
std::unordered_map<unsigned long, double> HanabiState<num_suits, num_players, hand_size>::visited_states() const {
return _position_tablebase;
}
} // namespace Hanabi

View file

@ -21,6 +21,7 @@ namespace Hanabi {
std::cout.precision(10);
std::cout << "Probability with optimal play: " << res << std::endl;
std::cout << "Enumerated " << game->enumerated_states() << " states" << std::endl;
std::cout << "Visited " << game->visited_states().size() << " unique game states. " << std::endl;
}
void print_sizes() {