w23-logic-3/inputs/lecture_13.tex
Josia Pietsch daec11591d
Some checks are pending
Build latex and deploy / checkout (push) Waiting to run
lecture 15
2023-12-08 01:39:20 +01:00

181 lines
5.9 KiB
TeX

\lecture{13}{2023-11-08}{}
% Recap
$\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $.
$\LO \subseteq 2^{\N \times \N}$ is closed
and $\WO = \{x \in \LO: x \text{ is a wellordering}\} $
is coanalytic in $\LO$.
% End Recap
Another way to code linear orders:
Consider $(\Q, <)$, the rationals with the usual order.
We can view $2^{\Q}$ as the space of linear orders
embeddable into $\Q$,
by associating a function $f\colon \Q \to \{0,1\}$
with $(f^{-1}(\{1\}), <)$.
\begin{lemma}
Any countable ordinal embeds into $(\Q,<)$.
\end{lemma}
\begin{proof}[sketch]
Use transfinite induction.
Suppose we already have $\alpha \hookrightarrow (\Q, <)$,
we need to show that $\alpha +1 \hookrightarrow (\Q, <)$.
Since $(0,1) \cap \Q \cong \Q$,
we may assume $\alpha \hookrightarrow ((0,1), <)$
and can just set $\alpha \mapsto 2$.
For a limit $\alpha$
take a countable cofinal subsequence $\alpha_1 < \alpha_2 < \ldots \to \alpha$.
Then map $[0,\alpha_1)$ to $(0,1)$
and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$.
\end{proof}
\begin{definition}[\vocab{Kleene-Brouwer ordering}]
Let $(A,<)$ be a linear order and $A$ countable.
We define the linear order $<_{KB}$ on $A^{<\N}$
as follows:
Let
\[
s = (s_0,\ldots,s_{m-1}), t = (t_0, \ldots, t_{n-1}).
\]
We set $s < t$ iff
\begin{itemize}
\item $(s \supsetneq t)$ or
\item $s_i < t_i$ for the minimal $i$ such that
$s_i \neq t_i$.
\end{itemize}
\end{definition}
\begin{proposition}
Suppose that $(A, <)$ is a countable well ordering.
Then for a tree $T \subseteq A^{<\N}$ on $A$,
Then $T$ is well-founded iff
$(T, <_{KB}\defon{T})$ is well ordered.
\end{proposition}
\begin{proof}
If $T$ is ill-founded and $x \in [T]$,
then for all $n$, we have $x\defon{n+1} <_{KB} x\defon{n}$.
Thus $(T, <_{KB}\defon{T})$ is not well ordered.
Conversely, let $<\defon{KB}$ be not a well-ordering
on $T$.
Let $s_0 >_{KB} s_1 >_{KB} s_2 >_{KB} \ldots$
be an infinite descending chain.
We have that $s_0(0) \ge s_1(0) \ge s_2(0) \ge \ldots$
stabilizes for $n > n_0$.
Let $a_0 \coloneqq s_{n_0}(0)$.
Now for $n \ge n_0$ we have that $s_n(0)$ is constant,
hence for $n > n_0$ the value $s_{n}(1)$ must be defined.
Thus there is $n_1 \ge n_0$ such that $s_n(1)$
is constant for all $n \ge n_1$.
Let $a_1 \coloneqq s_{n_1}(1)$
and so on.
Then $(a_0,a_1,a_2, \ldots) \in [T]$.
\end{proof}
\begin{theorem}[Lusin-Sierpinski]
The set $\LO \setminus \WO$
(resp.~$2^{\Q} \setminus \WO$)
is $\Sigma_1^1$-complete.
\end{theorem}
\begin{proof}
We will find a continuous function
$f\colon \Tr \to \LO$ such that
\[
x \in \WF \iff f(x) \in \WO
\]
(equivalently $x \in \IF \iff f(x) \in \LO \setminus \WO$).
This suffices, since $\IF \subseteq \Tr$ is $\Sigma^1_1$-complete
(see \yaref{cor:ifs11c}).
Fix a bijection $b\colon \N \to \N^{<\N}$.
\begin{idea}
For $T \in \Tr$ consider
$<_{KB}\defon{T}$
% TODO?
\end{idea}
Let $\alpha \in \Tr$.
For $m,n \in \N$ define $f(\alpha)(m,n) \coloneqq 1$
(i.e.~$m \le_{f(\alpha)} n$)
iff
\begin{itemize}
\item $(\alpha(b(m)) = \alpha(b(n)) = 1$
and $b(m) \le_{KB} b(n)$
(recall that we identified $\Tr$
with a subset of ${2^{\N}}^{<\N}$),
or
\item $\alpha(b(m)) = 1$ and $\alpha(b(n)) = 0$ or
\item $\alpha(b(m)) = \alpha(b(n)) = 0$ and $m \le n$.
\end{itemize}
Then $\alpha \in \WF \iff f(\alpha) \in \WO$
and $f$ is continuous.
\end{proof}
% TODO: new section?
Recall that a \vocab{rank} on a set $C$
is a map $\phi\colon C \to \Ord$.
\begin{example}
\begin{IEEEeqnarray*}{rCl}
\otp \colon \WO &\longrightarrow & \Ord \\
x &\longmapsto & \text{the unique $\alpha \in \Ord$ such that $x \cong \alpha$}.
\end{IEEEeqnarray*}
\end{example}
\begin{definition}
A \vocab{prewellordering} $\preceq$
on a set $C$
is a binary relation that is
\begin{itemize}
\item reflexive,
\item transitive,
\item total (any two $x,y$ are comparable),
\item $\prec$ ($x \prec y \iff x \preceq y \land y \not\preceq x$) is well-founded,
in the sense that there are no descending infinite chains.
\end{itemize}
\end{definition}
\begin{remark}
\begin{itemize}
\item A prewellordering may not be a linear order since
it is not necessarily antisymmetric.
\item The linearly ordered wellfounded sets are exactly the wellordered sets.
\item Modding out $x \sim y :\iff x \preceq y \land y \preceq x$
turns a prewellordering into a wellordering.
\end{itemize}
\end{remark}
We have the following correspondence
between downwards-closed ranks and prewellorderings:
\begin{IEEEeqnarray*}{rCl}
\text{ranks}&\longrightarrow & \text{prewellorderings} \\
(\phi\colon C \to \Ord) &\longmapsto & (x \le_{\phi} y :\iff \phi(x) \le \phi(y), x,y \in C)\\
\phi_{\preceq}&\longmapsfrom& \preceq,
\end{IEEEeqnarray*}
where $\phi_\preceq(x)$ is defined as
\begin{IEEEeqnarray*}{rCl}
\phi_{\preceq}(x) &\coloneqq &0 \text{ if $x$ is minimal},\\
\phi_{\preceq}(x) &\coloneqq & \sup \{\phi_{\preceq}(y) + 1 : y \prec x\},
\end{IEEEeqnarray*}
i.e.
\[
\phi_{\preceq}(x) = \otp\left(\faktor{\{y \in C : y \prec x\}}{\sim}\right).
\]
\begin{definition}
Let $X$ be Polish and $C \subseteq X$ coanalytic.
Then $\phi\colon C \to \Ord$
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
provided that $\le^\ast$ and $<^\ast$ are coanalytic,
where
$x \le^\ast_{\phi} y$
iff
\begin{itemize}
\item $y \in X \setminus C \land x \in C$ or
\item $x,y \in C \land \phi(x) \le \phi(y)$
\end{itemize}
and similarly for $<^\ast_{\phi}$.
\end{definition}