2023-11-28 11:58:58 +01:00
|
|
|
\lecture{13}{2023-11-08}{}
|
|
|
|
|
|
|
|
% Recap
|
|
|
|
$\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $.
|
|
|
|
$\LO \subseteq 2^{\N \times \N}$ is closed
|
|
|
|
and $\WO = \{x \in \LO: x \text{ is a wellordering}\} $
|
|
|
|
is coanalytic in $\LO$.
|
|
|
|
% End Recap
|
|
|
|
|
|
|
|
Another way to code linear orders:
|
|
|
|
|
|
|
|
Consider $(\Q, <)$, the rationals with the usual order.
|
|
|
|
We can view $2^{\Q}$ as the space of linear orders
|
|
|
|
embeddable into $\Q$,
|
|
|
|
by associating a function $f\colon \Q \to \{0,1\}$
|
|
|
|
with $(f^{-1}(\{1\}), <)$.
|
|
|
|
|
|
|
|
\begin{lemma}
|
|
|
|
Any countable ordinal embeds into $(\Q,<)$.
|
|
|
|
\end{lemma}
|
|
|
|
\begin{proof}[sketch]
|
|
|
|
Use transfinite induction.
|
|
|
|
Suppose we already have $\alpha \hookrightarrow (\Q, <)$,
|
|
|
|
we need to show that $\alpha +1 \hookrightarrow (\Q, <)$.
|
|
|
|
Since $(0,1) \cap \Q \cong \Q$,
|
|
|
|
we may assume $\alpha \hookrightarrow ((0,1), <)$
|
|
|
|
and can just set $\alpha \mapsto 2$.
|
|
|
|
|
|
|
|
For a limit $\alpha$
|
|
|
|
take a countable cofinal subsequence $\alpha_1 < \alpha_2 < \ldots \to \alpha$.
|
|
|
|
Then map $[0,\alpha_1)$ to $(0,1)$
|
|
|
|
and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{definition}[\vocab{Kleene-Brouwer ordering}]
|
|
|
|
Let $(A,<)$ be a linear order and $A$ countable.
|
|
|
|
We define the linear order $<_{KB}$ on $A^{<\N}$
|
|
|
|
as follows:
|
|
|
|
Let
|
|
|
|
\[
|
|
|
|
s = (s_0,\ldots,s_{m-1}), t = (t_0, \ldots, t_{n-1}).
|
|
|
|
\]
|
|
|
|
We set $s < t$ iff
|
|
|
|
\begin{itemize}
|
|
|
|
\item $(s \supsetneq t)$ or
|
|
|
|
\item $s_i < t_i$ for the minimal $i$ such that
|
|
|
|
$s_i \neq t_i$.
|
|
|
|
\end{itemize}
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{proposition}
|
|
|
|
Suppose that $(A, <)$ is a countable well ordering.
|
|
|
|
Then for a tree $T \subseteq A^{<\N}$ on $A$,
|
2023-12-08 01:39:20 +01:00
|
|
|
Then $T$ is well-founded iff
|
2023-11-28 11:58:58 +01:00
|
|
|
$(T, <_{KB}\defon{T})$ is well ordered.
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
|
|
|
If $T$ is ill-founded and $x \in [T]$,
|
|
|
|
then for all $n$, we have $x\defon{n+1} <_{KB} x\defon{n}$.
|
|
|
|
Thus $(T, <_{KB}\defon{T})$ is not well ordered.
|
|
|
|
|
|
|
|
Conversely, let $<\defon{KB}$ be not a well-ordering
|
|
|
|
on $T$.
|
|
|
|
Let $s_0 >_{KB} s_1 >_{KB} s_2 >_{KB} \ldots$
|
|
|
|
be an infinite descending chain.
|
|
|
|
We have that $s_0(0) \ge s_1(0) \ge s_2(0) \ge \ldots$
|
|
|
|
stabilizes for $n > n_0$.
|
|
|
|
Let $a_0 \coloneqq s_{n_0}(0)$.
|
|
|
|
Now for $n \ge n_0$ we have that $s_n(0)$ is constant,
|
|
|
|
hence for $n > n_0$ the value $s_{n}(1)$ must be defined.
|
|
|
|
Thus there is $n_1 \ge n_0$ such that $s_n(1)$
|
|
|
|
is constant for all $n \ge n_1$.
|
|
|
|
Let $a_1 \coloneqq s_{n_1}(1)$
|
|
|
|
and so on.
|
|
|
|
Then $(a_0,a_1,a_2, \ldots) \in [T]$.
|
|
|
|
\end{proof}
|
|
|
|
\begin{theorem}[Lusin-Sierpinski]
|
|
|
|
The set $\LO \setminus \WO$
|
|
|
|
(resp.~$2^{\Q} \setminus \WO$)
|
|
|
|
is $\Sigma_1^1$-complete.
|
|
|
|
\end{theorem}
|
|
|
|
\begin{proof}
|
|
|
|
We will find a continuous function
|
|
|
|
$f\colon \Tr \to \LO$ such that
|
|
|
|
\[
|
|
|
|
x \in \WF \iff f(x) \in \WO
|
|
|
|
\]
|
|
|
|
(equivalently $x \in \IF \iff f(x) \in \LO \setminus \WO$).
|
|
|
|
This suffices, since $\IF \subseteq \Tr$ is $\Sigma^1_1$-complete
|
2023-12-08 01:39:20 +01:00
|
|
|
(see \yaref{cor:ifs11c}).
|
2023-11-28 11:58:58 +01:00
|
|
|
|
|
|
|
Fix a bijection $b\colon \N \to \N^{<\N}$.
|
|
|
|
|
|
|
|
\begin{idea}
|
|
|
|
For $T \in \Tr$ consider
|
|
|
|
$<_{KB}\defon{T}$
|
|
|
|
% TODO?
|
|
|
|
\end{idea}
|
|
|
|
|
|
|
|
Let $\alpha \in \Tr$.
|
|
|
|
For $m,n \in \N$ define $f(\alpha)(m,n) \coloneqq 1$
|
|
|
|
(i.e.~$m \le_{f(\alpha)} n$)
|
|
|
|
iff
|
|
|
|
\begin{itemize}
|
|
|
|
\item $(\alpha(b(m)) = \alpha(b(n)) = 1$
|
|
|
|
and $b(m) \le_{KB} b(n)$
|
|
|
|
(recall that we identified $\Tr$
|
|
|
|
with a subset of ${2^{\N}}^{<\N}$),
|
|
|
|
or
|
|
|
|
\item $\alpha(b(m)) = 1$ and $\alpha(b(n)) = 0$ or
|
|
|
|
\item $\alpha(b(m)) = \alpha(b(n)) = 0$ and $m \le n$.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
Then $\alpha \in \WF \iff f(\alpha) \in \WO$
|
|
|
|
and $f$ is continuous.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
% TODO: new section?
|
|
|
|
|
|
|
|
Recall that a \vocab{rank} on a set $C$
|
|
|
|
is a map $\phi\colon C \to \Ord$.
|
|
|
|
\begin{example}
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
\otp \colon \WO &\longrightarrow & \Ord \\
|
|
|
|
x &\longmapsto & \text{the unique $\alpha \in \Ord$ such that $x \cong \alpha$}.
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
\end{example}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
A \vocab{prewellordering} $\preceq$
|
|
|
|
on a set $C$
|
|
|
|
is a binary relation that is
|
|
|
|
\begin{itemize}
|
|
|
|
\item reflexive,
|
|
|
|
\item transitive,
|
|
|
|
\item total (any two $x,y$ are comparable),
|
|
|
|
\item $\prec$ ($x \prec y \iff x \preceq y \land y \not\preceq x$) is well-founded,
|
|
|
|
in the sense that there are no descending infinite chains.
|
|
|
|
\end{itemize}
|
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
\begin{itemize}
|
|
|
|
\item A prewellordering may not be a linear order since
|
|
|
|
it is not necessarily antisymmetric.
|
|
|
|
\item The linearly ordered wellfounded sets are exactly the wellordered sets.
|
|
|
|
\item Modding out $x \sim y :\iff x \preceq y \land y \preceq x$
|
|
|
|
turns a prewellordering into a wellordering.
|
|
|
|
\end{itemize}
|
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
We have the following correspondence
|
|
|
|
between downwards-closed ranks and prewellorderings:
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
\text{ranks}&\longrightarrow & \text{prewellorderings} \\
|
|
|
|
(\phi\colon C \to \Ord) &\longmapsto & (x \le_{\phi} y :\iff \phi(x) \le \phi(y), x,y \in C)\\
|
|
|
|
\phi_{\preceq}&\longmapsfrom& \preceq,
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
where $\phi_\preceq(x)$ is defined as
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
\phi_{\preceq}(x) &\coloneqq &0 \text{ if $x$ is minimal},\\
|
|
|
|
\phi_{\preceq}(x) &\coloneqq & \sup \{\phi_{\preceq}(y) + 1 : y \prec x\},
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
i.e.
|
|
|
|
\[
|
|
|
|
\phi_{\preceq}(x) = \otp\left(\faktor{\{y \in C : y \prec x\}}{\sim}\right).
|
|
|
|
\]
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $X$ be Polish and $C \subseteq X$ coanalytic.
|
|
|
|
Then $\phi\colon C \to \Ord$
|
|
|
|
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
|
|
|
|
provided that $\le^\ast$ and $<^\ast$ are coanalytic,
|
|
|
|
where
|
|
|
|
$x \le^\ast_{\phi} y$
|
|
|
|
iff
|
|
|
|
\begin{itemize}
|
|
|
|
\item $y \in X \setminus C \land x \in C$ or
|
|
|
|
\item $x,y \in C \land \phi(x) \le \phi(y)$
|
|
|
|
\end{itemize}
|
|
|
|
and similarly for $<^\ast_{\phi}$.
|
|
|
|
\end{definition}
|