Compare commits

..

2 commits

View file

@ -165,7 +165,13 @@
Since the cantor space embeds into $X$, Since the cantor space embeds into $X$,
we get the lower bound. we get the lower bound.
Since $X$ is second countable and Hausdorff, Since $X$ is second countable and Hausdorff,
we get the upper bound.% we get the upper bound:
Let $\langle U_n : n < \omega \rangle$ be a countable basis.
Consider the injective function
\begin{IEEEeqnarray*}{rCl}
f\colon X &\longrightarrow & 2^{ \omega} \\
x &\longmapsto & \{n : x \in U_n\}.
\end{IEEEeqnarray*}
}{Lower bound: $2^{\N} \hookrightarrow X$, }{Lower bound: $2^{\N} \hookrightarrow X$,
upper bound: \nth{2} countable and Hausdorff.} upper bound: \nth{2} countable and Hausdorff.}
\end{proof} \end{proof}