Compare commits
2 commits
ba609dfed0
...
415ff41b60
Author | SHA1 | Date | |
---|---|---|---|
415ff41b60 | |||
30701555de |
1 changed files with 7 additions and 1 deletions
|
@ -165,7 +165,13 @@
|
||||||
Since the cantor space embeds into $X$,
|
Since the cantor space embeds into $X$,
|
||||||
we get the lower bound.
|
we get the lower bound.
|
||||||
Since $X$ is second countable and Hausdorff,
|
Since $X$ is second countable and Hausdorff,
|
||||||
we get the upper bound.%
|
we get the upper bound:
|
||||||
|
Let $\langle U_n : n < \omega \rangle$ be a countable basis.
|
||||||
|
Consider the injective function
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
f\colon X &\longrightarrow & 2^{ \omega} \\
|
||||||
|
x &\longmapsto & \{n : x \in U_n\}.
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
}{Lower bound: $2^{\N} \hookrightarrow X$,
|
}{Lower bound: $2^{\N} \hookrightarrow X$,
|
||||||
upper bound: \nth{2} countable and Hausdorff.}
|
upper bound: \nth{2} countable and Hausdorff.}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
Loading…
Reference in a new issue