Compare commits
2 commits
8f800b4403
...
09658bbcb5
Author | SHA1 | Date | |
---|---|---|---|
09658bbcb5 | |||
4d3e3c2a49 |
5 changed files with 152 additions and 16 deletions
|
@ -97,6 +97,7 @@
|
||||||
%\end{example}
|
%\end{example}
|
||||||
|
|
||||||
\begin{theorem}[Baire Category theorem]
|
\begin{theorem}[Baire Category theorem]
|
||||||
|
\yalabel{Baire Category Theorem}{Baire Category Theorem}{thm:bct}
|
||||||
Let $X$ be a completely metrizable space.
|
Let $X$ be a completely metrizable space.
|
||||||
Then every comeager set of $X$ is dense in $X$.
|
Then every comeager set of $X$ is dense in $X$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
|
@ -140,16 +140,7 @@ amounts to a finite number of conditions on the preimage.
|
||||||
\end{pmatrix*}&\longmapsfrom & \beta \in \Homeo(X).
|
\end{pmatrix*}&\longmapsfrom & \beta \in \Homeo(X).
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Clearly this has the desired properties.
|
Clearly this has the desired properties.
|
||||||
\item We have
|
\item Let $X$ be a compact Polish space.
|
||||||
\begin{IEEEeqnarray*}{Cl}
|
|
||||||
& \Z \circlearrowright X \text{ has a dense orbit}\\
|
|
||||||
\iff& \exists x \in X.~ \overline{\Z\cdot x} = X\\
|
|
||||||
\iff& \exists x \in X.~\forall U\overset{\text{open}}{\subseteq} X.~\exists z \in \Z.~
|
|
||||||
z \cdot x \in U\\
|
|
||||||
\iff&\exists x \in X.~\forall U \overset{\text{open}}{\subseteq} X.~
|
|
||||||
\exists z \in \Z.~f^z(x) \in U.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
\item Let $X$ be a compact Polish space.
|
|
||||||
What is the Borel complexity of $\Homeo(X)$ inside $\cC(X,X)$?
|
What is the Borel complexity of $\Homeo(X)$ inside $\cC(X,X)$?
|
||||||
|
|
||||||
Recall that $\cC(X,X)$ is a Polish space with the uniform topology.
|
Recall that $\cC(X,X)$ is a Polish space with the uniform topology.
|
||||||
|
@ -160,14 +151,9 @@ amounts to a finite number of conditions on the preimage.
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
by the general fact
|
by the general fact
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
Let $X$ be comapct and $Y$ Hausdorff,
|
Let $X$ be compact and $Y$ Hausdorff,
|
||||||
$f\colon X \to Y$ a continuous bijection.
|
$f\colon X \to Y$ a continuous bijection.
|
||||||
Then $f$ is a homeomorphism.
|
Then $f$ is a homeomorphism.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\item It suffices to check the condition from part (b)
|
|
||||||
for open sets $U$ of a countable basis
|
|
||||||
and points $x \in X$ belonging to a countable dense subset.
|
|
||||||
Replacing quantifiers by unions resp.~intersections
|
|
||||||
gives that $D$ is Borel.
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
145
inputs/tutorial_13.tex
Normal file
145
inputs/tutorial_13.tex
Normal file
|
@ -0,0 +1,145 @@
|
||||||
|
\tutorial{13}{2024-01-23}{}
|
||||||
|
|
||||||
|
|
||||||
|
Continuation of sheet 8, exercise 4.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
Let $X$ be a compact metric space.
|
||||||
|
For $K \subseteq X$ compact and $U \overset{\text{open}}{\subseteq} X$
|
||||||
|
let
|
||||||
|
\[
|
||||||
|
S_{K,U} \coloneqq \{f \in \cC(X,X): f(K) \subseteq U\}.
|
||||||
|
\]
|
||||||
|
The \vocab{compact open topology} on $\cC(X,X)$
|
||||||
|
is the topology that has $S_{K,U}$ as a subbase.
|
||||||
|
\end{definition}
|
||||||
|
\begin{fact}
|
||||||
|
If $X$ is compact,
|
||||||
|
then the compact open topology
|
||||||
|
is the topology induced by the uniform metric $d_\infty$.
|
||||||
|
\end{fact}
|
||||||
|
\begin{proof}
|
||||||
|
Take some $S_{K,U}$. We need to show that this can be written
|
||||||
|
as a union of open $d_{\infty}$-balls.
|
||||||
|
Let $f_0 \in S_{K,U}$.
|
||||||
|
Consider the continuous function $d(-, U^c)$.
|
||||||
|
Since $f_0(K)$ is compact,
|
||||||
|
there exists $\epsilon \coloneqq \min d(f_0(K), U^c)$
|
||||||
|
and $B_{\epsilon}(f_0) \subseteq S_{K,U}$.
|
||||||
|
|
||||||
|
|
||||||
|
On the other hand, consider $B_{\epsilon}(f_0)$ for some $\epsilon > 0$
|
||||||
|
and $f_0 \in \cC(X,X)$.
|
||||||
|
|
||||||
|
As $f_0$ is uniformly continuous,
|
||||||
|
there exists $\delta > 0$ such that $d(x,x') < \delta \implies d(f_0(x), f_0(x')) < \frac{\epsilon}{3}$.
|
||||||
|
Cover $X$ with finitely many $\delta$-balls $B_\delta(a_1), \ldots, B_{\delta}(a_k)$.
|
||||||
|
Then
|
||||||
|
\[f_0(\overline{B_{\delta}(a_i)}) \subseteq \overline{f_0(B_{\delta}(a_i)} \subseteq \overline{B_{\frac{\epsilon}{3}}(f_0(a_i))} \subseteq B_{\frac{\epsilon}{2}}(f_0(a_i)).\]
|
||||||
|
|
||||||
|
For $i \le k$, let $S_i \coloneqq S_{\overline{B_{\delta}(a_i)}, B_{\frac{\epsilon}{2}}(f_0(a_i))}$.
|
||||||
|
Take $\bigcap_{i \le k} S_i$. This is open
|
||||||
|
in the compact open topology and
|
||||||
|
$B_{\epsilon}(f_0) \subseteq \bigcap_{i \le k} S_i$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
$f \in \cC(X,X)$ is surjective
|
||||||
|
iff for all basic open $\emptyset\neq U \subseteq X$
|
||||||
|
there exists a basic open $\emptyset \neq V \subseteq X$
|
||||||
|
with $f(\overline{V}) \subseteq U$.
|
||||||
|
|
||||||
|
Note that we can write this as a $G_\delta$-condition.
|
||||||
|
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Take $B_\epsilon(f(x_0))\subseteq U$.
|
||||||
|
Then there exists $\delta > 0$
|
||||||
|
such that $f(B_{\delta}(x_0)) \subseteq B_{\frac{\epsilon}{2}}(f(x_0))$
|
||||||
|
hence $f(\overline{B_{\delta}(x_0)}) \subseteq B_\epsilon(f(x_0))$.
|
||||||
|
|
||||||
|
|
||||||
|
For the other direction take $y \in X$.
|
||||||
|
We want to find a preimage.
|
||||||
|
For every $B_{\frac{1}{n}}(y)$,
|
||||||
|
there exists a basic open set $V_n$ with $f(\overline{V}) \subseteq B_{\frac{1}{n}}(y)$.
|
||||||
|
Take $x_n \in V_n$.
|
||||||
|
Since $X$ is compact, it is sequentially compact,
|
||||||
|
so there exists a converging subsequence.
|
||||||
|
Wlog.~$x_n \to x$,
|
||||||
|
so $f(x_n) \to f(x) = y$.
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
$f \in \cC(X,X)$ is injective iff
|
||||||
|
for all basic open $U$,$V$
|
||||||
|
with $\overline{U} \cap \overline{V} = \emptyset$
|
||||||
|
we have $f(\overline{U}) \cap f(\overline{V}) = \emptyset$.
|
||||||
|
|
||||||
|
This is a $G_\delta$-condition,
|
||||||
|
since we can write it as
|
||||||
|
\[
|
||||||
|
\bigcap_{U,V} S_{\overline{U}, f(\overline{V})^c}.
|
||||||
|
\]
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
$\implies$ is trivial.
|
||||||
|
|
||||||
|
$\impliedby$ follows since for all pairs $x,y \in X$,
|
||||||
|
we can find $x \in U$, $y \in V$ such that $\overline{U} \cap \overline{V} = \emptyset$.
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
Hence $\Homeo(X,X)$ is $G_\delta$.
|
||||||
|
In particular it is a Polish space.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Let $D$ be the set of $\Z$-flows with dense orbit.
|
||||||
|
\begin{claim}
|
||||||
|
$f \in D$ $\iff$
|
||||||
|
for all basic open $U,V \subseteq X$,
|
||||||
|
there exists $n \in \Z$
|
||||||
|
such that $f^n(U) \cap V \neq \emptyset$.
|
||||||
|
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Suppose that the orbit of $x_0 \in X$ is dense.
|
||||||
|
Then there exist $k,l \in \Z$
|
||||||
|
such that $f^k(x_0)\in U$ and $f^l(x_0) \in V$,
|
||||||
|
so $f^{l-k} U \cap V \neq \emptyset$.
|
||||||
|
|
||||||
|
|
||||||
|
For basic open sets $V$
|
||||||
|
let
|
||||||
|
\[
|
||||||
|
A_V \coloneqq \{ x \in X: \exists n.~ f^n(x) \in V\}.
|
||||||
|
\]
|
||||||
|
By assumption, all the $A_V$ are dense.
|
||||||
|
Hence $\bigcap_{V}A_V$ is dense by the \yaref{thm:bct}.
|
||||||
|
|
||||||
|
$A_V = \bigcup_{n \in \Z} f^n(V)$ is open.
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
The condition can be written as a $G_\delta$ set.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
|
||||||
|
For $f_0(U) \cap V \neq \emptyset$
|
||||||
|
take $u \in U$ such that $f_0(u) \in V$.
|
||||||
|
Then there exists $\epsilon > 0$ such that $B_{\epsilon}(f_0(u)) \subseteq U$,
|
||||||
|
hence $B_{\epsilon}(f_0)$ is an open neighbourhood contained
|
||||||
|
in $\{f : f(U) \cap V \neq \emptyset \} $.
|
||||||
|
|
||||||
|
For $n = 2$ note that
|
||||||
|
$d(f^2(u), f^2_0(u) \le d(f(f(u)), f_0(f(u))) + d(f_0(f(u)), f_0(f_0(u)))$.
|
||||||
|
The first part can be bounded by $d(f,f_0)$.
|
||||||
|
For the second part,
|
||||||
|
note that there exists $\delta$ such that
|
||||||
|
\[d(a,b) < \delta \implies d(f_0(a), f_0(b)) < \frac{\epsilon}{2}.\]
|
||||||
|
Let $\eta \coloneqq \min \{\delta, \frac{\epsilon}{2}\}$
|
||||||
|
and consider $d_\infty(f,f_0) < \epsilon$.
|
||||||
|
|
||||||
|
For other $n$ it is some more work, which is left as an exercise.
|
||||||
|
\end{subproof}
|
||||||
|
|
|
@ -1,6 +1,9 @@
|
||||||
\NeedsTeXFormat{LaTeX2e}
|
\NeedsTeXFormat{LaTeX2e}
|
||||||
\ProvidesPackage{jrpie-gist}[2023/01/22 - gist version for lecture notes]
|
\ProvidesPackage{jrpie-gist}[2023/01/22 - gist version for lecture notes]
|
||||||
|
|
||||||
|
% TODO gist info
|
||||||
|
% TODO link to long version (provide link to main document)
|
||||||
|
|
||||||
\newcommand{\gist}[2]{%
|
\newcommand{\gist}[2]{%
|
||||||
\ifcsname EnableGist\endcsname%
|
\ifcsname EnableGist\endcsname%
|
||||||
#2%
|
#2%
|
||||||
|
|
|
@ -66,6 +66,7 @@
|
||||||
\input{inputs/tutorial_07}
|
\input{inputs/tutorial_07}
|
||||||
\input{inputs/tutorial_08}
|
\input{inputs/tutorial_08}
|
||||||
\input{inputs/tutorial_09}
|
\input{inputs/tutorial_09}
|
||||||
|
\input{inputs/tutorial_13} % sic!
|
||||||
\input{inputs/tutorial_10}
|
\input{inputs/tutorial_10}
|
||||||
\input{inputs/tutorial_11}
|
\input{inputs/tutorial_11}
|
||||||
\input{inputs/tutorial_12b}
|
\input{inputs/tutorial_12b}
|
||||||
|
|
Loading…
Reference in a new issue