Merge branch 'main' of https://git.abstractnonsen.se/josia-notes/w23-logic-3
This commit is contained in:
commit
ffcd9cd45f
20 changed files with 291 additions and 188 deletions
|
@ -44,4 +44,12 @@ title = {Classical Descriptive Set Theory},
|
|||
volume = {156},
|
||||
year = {2012},
|
||||
}
|
||||
@MISC{3722713,
|
||||
TITLE = {Embedding of countable linear orders into $\Bbb Q$ as topological spaces},
|
||||
AUTHOR = {Eric Wofsey},
|
||||
HOWPUBLISHED = {Mathematics Stack Exchange},
|
||||
NOTE = {URL:https://math.stackexchange.com/q/3722713 (version: 2020-06-16)},
|
||||
EPRINT = {https://math.stackexchange.com/q/3722713},
|
||||
URL = {https://math.stackexchange.com/q/3722713}
|
||||
}
|
||||
|
||||
|
|
|
@ -164,8 +164,10 @@
|
|||
\]
|
||||
\end{notation}
|
||||
|
||||
\gist{%
|
||||
The following similar to Fubini,
|
||||
but for meager sets:
|
||||
}{}
|
||||
|
||||
\begin{theorem}[Kuratowski-Ulam]
|
||||
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
||||
|
@ -193,6 +195,7 @@ but for meager sets:
|
|||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{refproof}{thm:kuratowskiulam}
|
||||
\gist{
|
||||
(ii) and (iii) are equivalent by passing to the complement.
|
||||
|
||||
\begin{claim}%[1a]
|
||||
|
@ -286,16 +289,11 @@ but for meager sets:
|
|||
$M_x$ is comeager
|
||||
as a countable intersection of comeager sets.
|
||||
\end{refproof}
|
||||
}{}
|
||||
|
||||
|
||||
% \phantom\qedhere
|
||||
% \end{refproof}
|
||||
% TODO fix claim numbers
|
||||
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
Suppose that $A$ has the BP.
|
||||
Then there is an open $U$ such that
|
||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
||||
Then $A = U \symdif M$.
|
||||
\end{remark}
|
||||
}{}
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
\lecture{06}{2023-11-03}{}
|
||||
|
||||
\gist{%
|
||||
% \begin{refproof}{thm:kuratowskiulam}
|
||||
\begin{enumerate}[(i)]
|
||||
\item Let $A$ be a set with the Baire Property.
|
||||
\item Let $A$ be a set with the Baire property.
|
||||
Write $A = U \symdif M$
|
||||
for $U$ open and $M$ meager.
|
||||
Then for all $x$,
|
||||
|
@ -51,8 +51,8 @@
|
|||
Towards a contradiction suppose that $A$ is not meager.
|
||||
Then $U$ is not meager.
|
||||
Since $X \times Y$ is second countable,
|
||||
we have that $A$ is a countable union of open rectangles.
|
||||
At least one of them, say $G \times H \subseteq A$,
|
||||
we have that $U$ is a countable union of open rectangles.
|
||||
At least one of them, say $G \times H \subseteq U$,
|
||||
is not meager.
|
||||
By \yaref{thm:kuratowskiulam:c2},
|
||||
both $G$ and $H$ are not meager.
|
||||
|
@ -71,7 +71,59 @@
|
|||
``$\implies$''
|
||||
This is \yaref{thm:kuratowskiulam:c1b}.
|
||||
\end{enumerate}
|
||||
}{%
|
||||
\begin{itemize}
|
||||
\item (ii) $\iff$ (iii): pass to complement.
|
||||
\item $F \overset{\text{closed}}{\subseteq} X \times Y$ nwd.
|
||||
$\implies \{x \in X : F_x \text{ nwd}\} $ comeager:
|
||||
\begin{itemize}
|
||||
\item $W = F^c$ is open and dense, show that $\{x : W_x \text{ dense}\}$
|
||||
is comeager.
|
||||
\item $(V_n)$ enumeration of basis. Show that $U_n \coloneqq \{x : V_n \cap W_x \neq \emptyset\}$
|
||||
is comeager for all $n$.
|
||||
\item $U_n$ is open (projection of open) and dense ($W$ is dense, hence $W \cap ( U \times V_n) \neq \emptyset$ for $U$ open).
|
||||
\end{itemize}
|
||||
\item $F \subseteq X \times Y$ is nwd $\implies \{x \in X: F_x \text{ nwd}\}$ comeager.
|
||||
(consider $\overline{F}$).
|
||||
\item (ii) $\implies$:
|
||||
$M \subseteq X \times Y$ meager $\implies \{x \in X: M_x \text{ meager}\}$ comeager
|
||||
(write $M$ as ctbl. union of nwd.)
|
||||
\item (i): If $A$ has the Baire Property,
|
||||
then $A = U \symdif M$, $A_x = U_x \symdif M_x$,
|
||||
$U_x$ open and $\{x : M_x \text{ meager}\}$ comeager
|
||||
$\implies$ (i).
|
||||
\item $P \subseteq X$, $Q \subseteq Y$ BP,
|
||||
then $P \times Q$ meager $\iff$ $P$ or $Q$ meager.
|
||||
\begin{itemize}
|
||||
\item $\impliedby$ easy
|
||||
\item $\implies$ Suppose $P \times Q$ meager, $P$ not meager.
|
||||
$\emptyset\neq P \cap \underbrace{\{x : (P \times Q)_x \text{ meager} \}}_{\text{comeager}} \ni x$.
|
||||
$(P \times Q)_x = Q$ is meager.
|
||||
\end{itemize}
|
||||
\item (ii) $\impliedby$:
|
||||
\begin{itemize}
|
||||
\item $A$ BP, $\{x : A_x \text{ meager}\}$ comeager.
|
||||
\item $A = U \symdif M$.
|
||||
\item Suppose $A$ not meager $\leadsto$ $U$ not meager
|
||||
$\leadsto \exists G \times H \subseteq U$ not meager.
|
||||
\item $G$ and $H$ are not meager.
|
||||
\item $\exists x_0 \in G \cap \underbrace{\{x: A_x \text{ meager } \land M_x \text{ meager}\}}_\text{comeager}$.
|
||||
\item $H$ meager, as
|
||||
\[
|
||||
H \subseteq U_{x_0} \subseteq A_{x_0} \cup M_{x_0}.
|
||||
\]
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
}
|
||||
\end{refproof}
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
Suppose that $A$ has the BP.
|
||||
Then there is an open $U$ such that
|
||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
||||
Then $A = U \symdif M$.
|
||||
\end{remark}
|
||||
}{}
|
||||
|
||||
\section{Borel sets} % TODO: fix chapters
|
||||
|
||||
|
|
|
@ -18,20 +18,10 @@ by associating a function $f\colon \Q \to \{0,1\}$
|
|||
with $(f^{-1}(\{1\}), <)$.
|
||||
|
||||
\begin{lemma}
|
||||
Any countable ordinal embeds into $(\Q,<)$.
|
||||
Any countable wellorder embeds into $(\Q,<)$.
|
||||
\end{lemma}
|
||||
\begin{proof}[sketch]
|
||||
Use transfinite induction.
|
||||
Suppose we already have $\alpha \hookrightarrow (\Q, <)$,
|
||||
we need to show that $\alpha +1 \hookrightarrow (\Q, <)$.
|
||||
Since $(0,1) \cap \Q \cong \Q$,
|
||||
we may assume $\alpha \hookrightarrow ((0,1), <)$
|
||||
and can just set $\alpha \mapsto 2$.
|
||||
|
||||
For a limit $\alpha$
|
||||
take a countable cofinal subsequence $\alpha_1 < \alpha_2 < \ldots \to \alpha$.
|
||||
Then map $[0,\alpha_1)$ to $(0,1)$
|
||||
and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$.
|
||||
\begin{proof}\footnote{In the lecture this was only done for countable \emph{ordinals}.}
|
||||
Cf.~\cite{3722713}.
|
||||
\end{proof}
|
||||
|
||||
% TODO $\WF \subseteq 2^\Q$ is $\Sigma^1_1$-complete.
|
||||
|
|
|
@ -273,6 +273,7 @@ Recall:
|
|||
A limit of distal flows is distal.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Let $(X,T)$ be a limit of $\Sigma = \{(X_i, T) : i \in I\}$.
|
||||
Suppose that each $(X_i, T)$ is distal.
|
||||
If $(X,T)$ was not distal,
|
||||
|
@ -283,4 +284,7 @@ Recall:
|
|||
But then $g_n \pi_i(x_1) \to \pi_i(z)$
|
||||
and $g_n \pi_i(x_2) \to \pi_i(z)$,
|
||||
which is a contradiction since $(X_i, T)$ is distal.
|
||||
}{Suppose there is a proximal pair $x_1,x_2$.
|
||||
Take $i$ such that $\pi_i(x_1) \neq \pi_i(x_2) \lightning$.
|
||||
}
|
||||
\end{proof}
|
||||
|
|
|
@ -17,13 +17,13 @@ $X$ is always compact metrizable.
|
|||
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
|
||||
% \end{example}
|
||||
\begin{proof}
|
||||
% TODO TODO TODO Think!
|
||||
\gist{%
|
||||
The action of $1$ determines $h$.
|
||||
Consider
|
||||
\[
|
||||
\{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
|
||||
\]
|
||||
where the topology is the uniform convergence topology. % TODO REF EXERCISE
|
||||
where the topology is the uniform convergence topology.
|
||||
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||
Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
|
||||
i.e.~
|
||||
|
@ -82,6 +82,15 @@ $X$ is always compact metrizable.
|
|||
For $\alpha = h$ we get that
|
||||
a flow $\Z \acts X$ corresponds to $\Z \acts K$
|
||||
with $(1,x) \mapsto x + \alpha$.
|
||||
}{
|
||||
\begin{itemize}
|
||||
\item $G \coloneqq \overline{\{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||
\item $G$ is compact (Arzela-Ascoli), abelian topological group (closure of ab. top. group)
|
||||
\item Take any $x \in G$.
|
||||
\item $Gx$ is compact (since $g \mapsto gx$ is continuous and $G$ is compact)
|
||||
\item Stabilizer $G_x$ is closed. $K \coloneqq \faktor{G}{G_x}$, $K \to X, fG_x \mapsto f(x)$.
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
\begin{definition}
|
||||
Let $(X,T)$ be a flow
|
||||
|
@ -151,16 +160,18 @@ By Zorn's lemma, this will follow from
|
|||
& {(Z,T)}
|
||||
\arrow[from=1-1, to=1-3]
|
||||
\arrow[from=2-2, to=1-3]
|
||||
\arrow["{\text{isometric extension}}"{description}, from=1-1, to=2-2]
|
||||
\arrow["{\text{isometric extension}}"{description}, from=1-1, to=2-2]
|
||||
\end{tikzcd}\]
|
||||
\end{theorem}
|
||||
\yaref{thm:furstenberg} allows us to talk about ranks of distal minimal flows:
|
||||
\begin{definition}
|
||||
Let $(X, \Z)$ be distal minimal.
|
||||
Then $\rank((X,\Z)) \coloneqq \min \{\eta : (X, \Z) \cong (X_\eta, \Z)\}$
|
||||
where $(X_{\eta}, \Z)$ is as from the definition of quasi-isometric flows,
|
||||
i.e.~$\rank((X,\Z))$ is the minimal height such
|
||||
that a tower as in the definition exists.
|
||||
\begin{definition}[{\cite[{}13.1]{Furstenberg}}]
|
||||
\label{def:floworder}
|
||||
Let $(X,T)$ be a quasi-isometric flow,
|
||||
and let $\eta$ be the smallest ordinal
|
||||
such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$
|
||||
with $(X,T) = (X_\xi, T)$.
|
||||
Then $\eta$ is called the \vocab{rank} or \vocab{order} of the flow
|
||||
and is denoted by $\rank((X,T))$.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}+
|
||||
|
|
|
@ -127,7 +127,7 @@ since $X^X$ has these properties.
|
|||
|
||||
\begin{lemma}[Ellis–Numakura]
|
||||
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
||||
Every compact semigroup
|
||||
Every non-empty compact semigroup
|
||||
contains an \vocab{idempotent} element,
|
||||
i.e.~$f$ such that $f^2 = f$.
|
||||
\end{lemma}
|
||||
|
|
|
@ -35,20 +35,13 @@ equicontinuity coincide.
|
|||
By equicontinuity of $T$ we get that $\tilde{d}$ and $d$
|
||||
induce the same topology on $X$.
|
||||
\end{proof}
|
||||
\gist{
|
||||
Recall that we defined the order of a quasi-isometric flow
|
||||
to be the minimal number of steps required when building the tower
|
||||
to reach the flow with a quasi-isometric system (cf.~\yaref{thm:l16:3},
|
||||
\yaref{def:floworder}).
|
||||
}{}
|
||||
|
||||
|
||||
\begin{question}
|
||||
What is the minimal number of steps required
|
||||
when building the tower to reach the flow
|
||||
as in \yaref{thm:l16:3}?
|
||||
\end{question}
|
||||
\begin{definition}[{\cite[{}13.1]{Furstenberg}}]
|
||||
Let $(X,T)$ be a quasi isometric flow,
|
||||
and let $\eta$ be the smallest ordinal
|
||||
such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$
|
||||
with $(X,T) = (X_\xi, T)$.
|
||||
Then $\eta$ is called the \vocab{order} of the flow.
|
||||
\end{definition}
|
||||
\begin{theorem}[Maximal isometric factor]
|
||||
\label{thm:maxisomfactor}
|
||||
For every flow $(X,T)$ there is a maximal factor $(Y,T)$, $\pi\colon X\to Y$,
|
||||
|
@ -279,9 +272,6 @@ More generally we can show:
|
|||
In particular,
|
||||
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
||||
\end{proof}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
||||
\label{ex:19:inftorus}
|
||||
Let $X$ be the infinite torus
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
Here I'll try to only use multiplicative notation.
|
||||
\end{remark}
|
||||
}{}
|
||||
|
||||
We will be studying projections to the first $d$ coordinates,
|
||||
i.e.
|
||||
\[
|
||||
|
@ -34,9 +35,9 @@ For $d = 1$ we get the circle rotation $x \mapsto e^{\i \alpha} x$.
|
|||
\[
|
||||
H_m \coloneqq \{x \in S^1 : x^m = 0\}
|
||||
\]
|
||||
for some $m \in \Z$.
|
||||
for some $m \in \Z$.%
|
||||
\footnote{cf.~\yaref{s12e2}}
|
||||
\end{fact}
|
||||
\todo{Homework!}
|
||||
We will show that $\tau_d$ is minimal for all $d$,
|
||||
i.e.~every orbit is dense.
|
||||
From this it will follow that $\tau$ is minimal.
|
||||
|
@ -45,6 +46,8 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
|
|||
coordinates.
|
||||
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
|
||||
\begin{lemma}
|
||||
\label{lem:lec20:1}
|
||||
|
|
|
@ -146,9 +146,7 @@ For this we define
|
|||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||
\item Minimality:%
|
||||
\gist{%
|
||||
\footnote{This is not relevant for the exam.}
|
||||
|
||||
\notexaminable{%
|
||||
Let $\langle E_n : n < \omega \rangle$
|
||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||
|
||||
|
@ -165,11 +163,10 @@ For this we define
|
|||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||
Since the flow is distal, it suffices to show
|
||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||
}{ Not relevant for the exam.}
|
||||
}
|
||||
|
||||
\item The order of the flow is $\eta$:%
|
||||
\gist{%
|
||||
\footnote{This is not relevant for the exam.}
|
||||
\notexaminable{%
|
||||
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||
Consider the flows we get from $(f_i)_{i < j}$
|
||||
resp.~$(f_i)_{i \le j}$
|
||||
|
@ -193,6 +190,6 @@ For this we define
|
|||
\end{IEEEeqnarray*}
|
||||
Beleznay and Foreman show that this is open and dense.%
|
||||
% TODO similarities to the lemma used today
|
||||
}{ Not relevant for the exam.}
|
||||
}
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
|
|
|
@ -37,10 +37,9 @@ Let $I$ be a linear order
|
|||
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
|
||||
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
|
||||
\end{IEEEeqnarray*}
|
||||
\todo{Exercise sheet 12}
|
||||
$S$ is Borel.
|
||||
$S$ is Borel.\footnote{cf.~\yaref{s12e1}}
|
||||
|
||||
We will % TODO ?
|
||||
We will
|
||||
construct a reduction
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
\lecture{24}{2024-01-23}{Combinatorics!}
|
||||
|
||||
% ANKI 2
|
||||
|
||||
|
||||
\subsection{Applications to Combinatorics} % Ramsey Theory}
|
||||
|
||||
% TODO Define Ultrafilter
|
||||
|
||||
\begin{definition}
|
||||
An \vocab{ultrafilter} on $\N$ (or any other set)
|
||||
is a family $\cU \subseteq \cP(\N)$
|
||||
|
@ -44,6 +44,7 @@
|
|||
for $\{ n \in \N : \phi(n)\} \in \cU$.
|
||||
We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$.
|
||||
\end{notation}
|
||||
\gist{%
|
||||
\begin{observe}
|
||||
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
||||
|
||||
|
@ -53,6 +54,7 @@
|
|||
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
|
||||
\end{enumerate}
|
||||
\end{observe}
|
||||
}{}
|
||||
\begin{lemma}
|
||||
\label{lem:ultrafilterlimit}
|
||||
Let $X $ be a compact Hausdorff space.
|
||||
|
@ -70,7 +72,10 @@
|
|||
\begin{notation}
|
||||
In this case we write $x = \ulim{\cU}_n x_n$.
|
||||
\end{notation}
|
||||
\begin{refproof}{lem:ultrafilterlimit}[sketch]
|
||||
\begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works
|
||||
for metric spaces.}
|
||||
\gist{
|
||||
For metric spaces:
|
||||
Whenever we write $X = Y \cup Z$
|
||||
we have $(\cU n) x_n \in Y$
|
||||
or $(\cU n) x_n \in Z$.
|
||||
|
@ -85,8 +90,13 @@
|
|||
$C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$
|
||||
and
|
||||
$C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$.
|
||||
It is clear that we can do this for metric spaces,
|
||||
but such partition can be found for compact Hausdorff spaces as well.
|
||||
It is clear that we can do this for metric spaces.
|
||||
|
||||
}{}
|
||||
See \yaref{thm:uflimit} for the full proof.
|
||||
See
|
||||
\yaref{fact:compactiffufconv} and
|
||||
\yaref{fact:hdifffilterlimit} for a more general statement.
|
||||
\end{refproof}
|
||||
|
||||
Let $\beta \N$ be the Čech-Stone compactification of $\N$,
|
||||
|
@ -120,15 +130,14 @@ This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
|
|||
|
||||
This is not commutative,
|
||||
but associative and $a \mapsto a + b$ is continuous
|
||||
for a fixed $b$.
|
||||
This is called a left compact topological semigroup.
|
||||
|
||||
for a fixed $b$,
|
||||
i.e.~it is a left compact topological semigroup.
|
||||
|
||||
|
||||
|
||||
Let $X$ be a compact Hausdorff space
|
||||
and let $T \colon X \to X$ be continuous.%
|
||||
\footnote{Note that this need not be a homeomorphism, i.e.~we only get a $\N$-action
|
||||
\footnote{Note that this may not be a homeomorphism, i.e.~we only get a $\N$-action
|
||||
but not a $\Z$-action.}
|
||||
|
||||
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
||||
|
@ -157,7 +166,6 @@ is not necessarily continuous.
|
|||
\[
|
||||
\forall n.~\exists k < M.~ T^{n+k}(x) \in G.
|
||||
\]
|
||||
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
Let $\cU, \cV \in \beta\N$
|
||||
|
|
|
@ -7,15 +7,17 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
where a basis consist of sets
|
||||
$V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$.
|
||||
|
||||
\gist{%
|
||||
(For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$
|
||||
and $\beta\N = V_\N$.)
|
||||
}{}
|
||||
|
||||
\item Note also that for $A, B \subseteq \N$,
|
||||
$V_{A \cup B} = V_A \cup V_B$,
|
||||
$V_{A^c} = \beta\N \setminus V_A$.
|
||||
\end{itemize}
|
||||
\end{fact}
|
||||
|
||||
\gist{%
|
||||
\begin{observe}
|
||||
\label{ob:bNclopenbasis}
|
||||
Note that the basis is clopen. In particular
|
||||
|
@ -25,6 +27,7 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$,
|
||||
so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$.
|
||||
\end{observe}
|
||||
}{}
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:bNhd}
|
||||
|
@ -54,12 +57,14 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
$\bigcap_{j=1}^k F_{i_j} \neq \emptyset$.
|
||||
|
||||
We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$.
|
||||
\gist{%
|
||||
Replacing each $F_i$ by $V_{A_j^i}$ such
|
||||
that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$
|
||||
(cf.~\yaref{ob:bNclopenbasis})
|
||||
we may assume that $F_i$ is of the form $V_{A_i}$.
|
||||
We get $\{F_i = V_{A_i} : i \in I\}$
|
||||
with the finite intersection property.
|
||||
}{Wlog.~$F_i = V_{A_i}$.}
|
||||
Hence
|
||||
$\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$
|
||||
has the finite intersection property.
|
||||
|
@ -78,11 +83,10 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
\item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$.
|
||||
\item $\N \subseteq \beta\N$ is dense.
|
||||
\end{itemize}
|
||||
\todo{Easy exercise}
|
||||
% TODO write down (exercise)
|
||||
\end{fact}
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:uflimit}
|
||||
For every compact Hausdorff space $X$,
|
||||
a sequence $(x_n)$ in $X$,
|
||||
and $\cU \in \beta\N$,
|
||||
|
@ -132,6 +136,11 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
% TODO general fact: continuous functions agreeing on a dense set
|
||||
% agree everywhere (fact section)
|
||||
\end{proof}
|
||||
\begin{trivial}+
|
||||
$\beta$ is a functor from the category of topological
|
||||
spaces to the category of compact Hausdorff spaces.
|
||||
It is left adjoint to the inclusion functor.
|
||||
\end{trivial}
|
||||
|
||||
% RECAP
|
||||
\gist{%
|
||||
|
@ -216,13 +225,12 @@ to obtain
|
|||
Take $x_2 > x_1$ that satisfies this.
|
||||
\item Suppose we have chosen $\langle x_i : i < n \rangle$.
|
||||
Since $\cU$ is idempotent, we have
|
||||
\[
|
||||
(\cU n)[
|
||||
n \in P
|
||||
\land (\cU_k) n + k \in P
|
||||
\land \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)
|
||||
\land (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
|
||||
\]
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
(\cU n)&& n \in P\\
|
||||
&\land& (\cU_k) n + k \in P\\
|
||||
&\land& \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)\\
|
||||
&\land& (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
|
||||
\end{IEEEeqnarray*}
|
||||
Chose $x_n > x_{n-1}$ that satisfies this.
|
||||
\end{itemize}
|
||||
Set $H \coloneqq \{x_i : i < \omega\}$.
|
||||
|
@ -231,6 +239,3 @@ to obtain
|
|||
|
||||
Next time we'll see another proof of this theorem.
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -3,12 +3,36 @@
|
|||
% Points: 15 / 16
|
||||
|
||||
\nr 1
|
||||
\todo{handwritten solution}
|
||||
Let $(X,d)$ be a metric space and $\emptyset \neq A \subseteq X$.
|
||||
Let $d(x,A) \coloneqq \inf(d(x,a) : a \in A\}$.
|
||||
|
||||
\begin{itemize}
|
||||
\item $d(-,A)$ is uniformly continuous:
|
||||
|
||||
Clearly $|d(x,A) - d(y,A)| \le d(x,y)$.
|
||||
\todo{Add details}
|
||||
\item $d(x,A) = 0 \iff x \in \overline{A}$.
|
||||
|
||||
$d(x,A) = 0$ iff there is a sequence in $A$
|
||||
converging towards $x$ iff $x \in \overline{A}$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\nr 2
|
||||
|
||||
Let $X$ be a discrete space.
|
||||
For $f,g \in X^{\N}$ define
|
||||
\[
|
||||
d(f,g) \coloneqq \begin{cases}
|
||||
(1 + \min \{n: f(n) \neq g(n)\})^{-1} &: f \neq g,\\
|
||||
0 &: f= g.
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item $d$ is an ultrametric:
|
||||
\item $d$ is an \vocab{ultrametric},
|
||||
i.e.~$d(f,g) \le \max \{d(f,h), d(g,h)\}$ for all $f,g,h \in X^{\N}$ :
|
||||
|
||||
Let $f,g,h \in X^{\N}$.
|
||||
|
||||
|
@ -70,10 +94,15 @@
|
|||
|
||||
\nr 3
|
||||
|
||||
Consider $\N$ as a discrete space and $\N^{\N}$ with the product topology.
|
||||
Let
|
||||
\[
|
||||
S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
|
||||
\]
|
||||
\begin{enumerate}[(a)]
|
||||
\item $S_{\infty}$ is a Polish space:
|
||||
|
||||
From (2) we know that $\N^{\N}$ is Polish.
|
||||
From \yaref{s1e2} we know that $\N^{\N}$ is Polish.
|
||||
Hence it suffices to show that $S_{\infty}$ is $G_{\delta}$
|
||||
with respect to $\N^\N$.
|
||||
|
||||
|
@ -111,69 +140,9 @@
|
|||
Clearly there cannot exist a finite subcover
|
||||
as $B$ is the disjoint union of the $B_j$.
|
||||
|
||||
% TODO Think about this
|
||||
\end{enumerate}
|
||||
|
||||
\nr 4
|
||||
|
||||
% (uniform metric)
|
||||
%
|
||||
% \begin{enumerate}[(a)]
|
||||
% \item $d_u$ is a metric on $\cC(X,Y)$:
|
||||
%
|
||||
% It is clear that $d_u(f,f) = 0$.
|
||||
%
|
||||
% Let $f \neq g$. Then there exists $x \in X$ with
|
||||
% $f(x) \neq g(x)$, hence $d_u(f,g) \ge d(f(x), g(x)) > 0$.
|
||||
%
|
||||
% Since $d$ is symmetric, so is $d_u$.
|
||||
%
|
||||
% Let $f,g,h \in \cC(X,Y)$.
|
||||
% Take some $\epsilon > 0$
|
||||
% choose $x_1, x_2 \in X$
|
||||
% with $d_u(f,g) \le d(f(x_1), g(x_1)) + \epsilon$,
|
||||
% $d_u(g,h) \le d(g(x_2), h(x_2)) + \epsilon$.
|
||||
%
|
||||
% Then for all $x \in X$
|
||||
% \begin{IEEEeqnarray*}{rCl}
|
||||
% d(f(x), h(x)) &\le &
|
||||
% d(f(x), g(x)) + d(g(x), h(x))\\
|
||||
% &\le & d(f(x_1), g(x_1)) + d(g(x_2), h(x_2))-2\epsilon\\
|
||||
% &\le & d_u(f,g) + d_u(g,h) - 2\epsilon.
|
||||
% \end{IEEEeqnarray*}
|
||||
% Thus $d_u(f,g) \le d_u(f,g) + d_u(g,h) - 2\epsilon$.
|
||||
% Taking $\epsilon \to 0$ yields the triangle inequality.
|
||||
%
|
||||
% \item $\cC(X,Y)$ is a Polish space:
|
||||
% \todo{handwritten solution}
|
||||
%
|
||||
% \begin{itemize}
|
||||
% \item $d_u$ is a complete metric:
|
||||
%
|
||||
% Let $(f_n)_n$ be a Cauchy series with respect to $d_u$.
|
||||
%
|
||||
% Then clearly $(f_n(x))_n$ is a Cauchy sequence with respect
|
||||
% to $d$ for every $x$.
|
||||
% Hence there exists a pointwise limit $f$ of the $f_n$.
|
||||
% We need to show that $f$ is continuous.
|
||||
%
|
||||
% %\todo{something something uniform convergence theorem}
|
||||
%
|
||||
% \item $(\cC(X,Y), d_u)$ is separable:
|
||||
%
|
||||
% Since $Y$ is separable, there exists a countable
|
||||
% dense subset $S \subseteq Y$.
|
||||
%
|
||||
% Consider $\cC(X,S) \subseteq \cC(X,Y)$.
|
||||
% Take some $f \in \cC(X,Y)$.
|
||||
% Since $X$ is compact,
|
||||
%
|
||||
%
|
||||
% % TODO
|
||||
%
|
||||
% \end{itemize}
|
||||
% \end{enumerate}
|
||||
|
||||
\begin{fact}
|
||||
Let $X $ be a compact Hausdorff space.
|
||||
Then the following are equivalent:
|
||||
|
@ -205,7 +174,7 @@
|
|||
Let $X$ be compact Polish\footnote{compact metrisable $\implies$ compact Polish}
|
||||
and $Y $ Polish.
|
||||
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
|
||||
Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
||||
Consider the \vocab{uniform metric} $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
||||
Clearly $d_u$ is a metric.
|
||||
|
||||
\begin{claim}
|
||||
|
@ -243,7 +212,7 @@ Clearly $d_u$ is a metric.
|
|||
for each $y \in X_m$.
|
||||
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
|
||||
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
|
||||
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
||||
we find $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
||||
since $f$ is uniformly continuous.
|
||||
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
|
||||
We have $d_u(f,g) \le \eta$,
|
||||
|
|
|
@ -12,6 +12,14 @@
|
|||
|
||||
\nr 1
|
||||
|
||||
Let $X$ be a Polish space.
|
||||
Then there exists an injection $f\colon X \to 2^\omega$
|
||||
such that for each $n < \omega$,
|
||||
the set $f^{-1}(\{(y_n) \in 2^\omega : y_n = 1\})$
|
||||
is open.
|
||||
Moreover if $V \subseteq 2^{ \omega}$ is closed,
|
||||
then $f^{-1}(V)$ is $G_\delta$.
|
||||
|
||||
Let $(U_i)_{i < \omega}$ be a countable base of $X$.
|
||||
Define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
|
@ -19,6 +27,7 @@ Define
|
|||
x &\longmapsto & (x_i)_{i < \omega}
|
||||
\end{IEEEeqnarray*}
|
||||
where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise.
|
||||
\gist{
|
||||
Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$
|
||||
is open.
|
||||
We have that $f$ is injective since $X$ is T1.
|
||||
|
@ -51,17 +60,21 @@ Since $2^{n} \setminus \left( \prod_{i < n} X_i \right)$
|
|||
is finite, we get that
|
||||
$f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
|
||||
is $G_\delta$ as a finite union of $G_{\delta}$ sets.
|
||||
}{}
|
||||
|
||||
|
||||
|
||||
\nr 2
|
||||
Let $X$ be a Polish space. Then $X$ is homeomorphic to a closed subspace of $\R^{ \omega}$ :
|
||||
\todo{handwritten solution}
|
||||
(b)
|
||||
Let $f(x^{(i)})$ be a sequence in $f(X)$.
|
||||
Suppose that $f(x^{(i)}) \to y$.
|
||||
We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
|
||||
Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
|
||||
Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
||||
% \begin{itemize}
|
||||
% \item
|
||||
% Let $f(x^{(i)})$ be a sequence in $f(X)$.
|
||||
% Suppose that $f(x^{(i)}) \to y$.
|
||||
% We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
|
||||
% Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
|
||||
% Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
||||
% \end{itemize}
|
||||
|
||||
|
||||
\nr 3
|
||||
|
@ -130,6 +143,13 @@ Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
|||
\end{proof}
|
||||
|
||||
\nr 4
|
||||
|
||||
Define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f\colon \omega^{\omega} &\longrightarrow & 2^\omega \\
|
||||
(x_n)&\longmapsto & 0^{x_0} 1 0^{x_1} 1 \ldots.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
\begin{enumerate}[(1)]
|
||||
\item $f$ is a topological embedding:
|
||||
Consider a basic open set
|
||||
|
|
|
@ -8,7 +8,7 @@ Let $A \neq \emptyset$ be discrete.
|
|||
For $D \subseteq A^{\omega}$,
|
||||
let
|
||||
\[
|
||||
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}..
|
||||
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}.
|
||||
\]
|
||||
\begin{enumerate}[(a)]
|
||||
\item For any $D \subseteq A^\omega$, $T_D$ is a pruned tree:
|
||||
|
|
|
@ -267,14 +267,14 @@ $X_\omega \coloneqq \bigcap X_i$ and $Y_\omega \coloneqq \bigcap Y_i$.
|
|||
|
||||
% https://q.uiver.app/#q=WzAsMTYsWzAsMCwiWCBcXHNldG1pbnVzIFhfXFxvbWVnYSA9Il0sWzAsMSwiWVxcc2V0bWludXMgWV9cXG9tZWdhID0iXSxbMSwwLCIoWF8wIFxcc2V0bWludXMgWF8xKSJdLFsxLDEsIihZXzAgXFxzZXRtaW51cyBZXzEpIl0sWzMsMSwiKFlfMSBcXHNldG1pbnVzIFlfMikiXSxbNSwxLCIoWV8yIFxcc2V0bWludXMgWV8zKSJdLFszLDAsIihYXzEgXFxzZXRtaW51cyBYXzIpIl0sWzUsMCwiKFhfMiBcXHNldG1pbnVzIFhfMykiXSxbNiwwLCJcXGNkb3RzIl0sWzYsMSwiXFxjZG90cyJdLFs0LDAsIlxcY3VwIl0sWzQsMSwiXFxjdXAiXSxbNywxXSxbNywwXSxbMiwwLCJcXGN1cCJdLFsyLDEsIlxcY3VwIl0sWzIsNCwiZiIsMix7ImxhYmVsX3Bvc2l0aW9uIjo3MH1dLFszLDYsImciLDAseyJsYWJlbF9wb3NpdGlvbiI6MTB9XSxbNywxMiwiZiIsMCx7ImxhYmVsX3Bvc2l0aW9uIjo4MH1dLFs1LDEzLCJnIiwwLHsibGFiZWxfcG9zaXRpb24iOjEwfV1d
|
||||
\adjustbox{scale=0.7,center}{%
|
||||
\[\begin{tikzcd}
|
||||
\begin{tikzcd}
|
||||
{X \setminus X_\omega =} & {(X_0 \setminus X_1)} & \cup & {(X_1 \setminus X_2)} & \cup & {(X_2 \setminus X_3)} & \cdots & {} \\
|
||||
{Y\setminus Y_\omega =} & {(Y_0 \setminus Y_1)} & \cup & {(Y_1 \setminus Y_2)} & \cup & {(Y_2 \setminus Y_3)} & \cdots & {}
|
||||
\arrow["f"'{pos=0.7}, from=1-2, to=2-4]
|
||||
\arrow["g"{pos=0.1}, from=2-2, to=1-4]
|
||||
\arrow["f"{pos=0.8}, from=1-6, to=2-8]
|
||||
\arrow["g"{pos=0.1}, from=2-6, to=1-8]
|
||||
\end{tikzcd}\]
|
||||
\end{tikzcd}
|
||||
}
|
||||
|
||||
By \autoref{thm:lusinsouslin}
|
||||
|
|
|
@ -63,7 +63,7 @@ Flows are always on non-empty spaces $X$.
|
|||
\begin{proof}
|
||||
(i) $\implies$ (ii):
|
||||
Let $(Y,T)$ be a subflow of $(X,T)$.
|
||||
take $y \in Y$. Then $Ty$ is dense in mKX.
|
||||
take $y \in Y$. Then $Ty$ is dense in $X$.
|
||||
But $Ty \subseteq Y$, so $Y$ is dense in $X$.
|
||||
Since $Y$ is closed, we get $Y = X$.
|
||||
|
||||
|
|
|
@ -4,9 +4,58 @@
|
|||
\nr 1
|
||||
% Examinable
|
||||
|
||||
% TODO (there is a more direct way to do it, not using analytic / coanalytic)
|
||||
Let $\LO(\N) \overset{\text{closed}}{\subseteq} 2^{\N\times \N}$ denote the set of linear orders on $\N$.
|
||||
|
||||
Let $S \subseteq \LO(\N)$ be the set of orders having a least
|
||||
element and such that every element has an immediate successor.
|
||||
\begin{itemize}
|
||||
\item $S$ is Borel in $\LO(\N)$:
|
||||
|
||||
Let $M_n \subseteq \LO(\N)$ be the set of orders with minimal element $n$.
|
||||
Let $I_{n,m} \subseteq \LO(\N)$ be the set of orders such
|
||||
that $m$ is the immediate successor of $n$.
|
||||
|
||||
Clearly $S = \left(\bigcap_n \bigcup_{m\neq n} I_{n,m}\right) \cap \bigcup_n M_n$,
|
||||
so it suffices to show that $M_n$ and $I_{n,m}$ are Borel.
|
||||
It is $M_n = \bigcap_{m\neq n} \{\prec : m \not\prec n\}$
|
||||
and $I_{n,m} = \{\prec: n \prec m\} \cap \bigcap_{i} \{\prec : n \preceq i \preceq m \implies n = i \lor n = m \}$.
|
||||
\item Give an example of an element of $S$ which is not well-ordered:
|
||||
|
||||
Consider $\{1 - \frac{1}{n} : n \in \N^+\} \cup \{1 + \frac{1}{n} : n \in \N^{+}\} \subseteq \R$
|
||||
with the order $<_\R$.
|
||||
This is an element of $S$,
|
||||
but $\{x \in S: x \ge 1\}$ has no minimal element,
|
||||
hence it is not well-ordered.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\nr 2
|
||||
% Examinable
|
||||
Recall the definition of the circle shift flow $(\R / \Z, \Z)$
|
||||
with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$.
|
||||
|
||||
\begin{itemize}
|
||||
\item If $\alpha \not\in \Q$, then $(\R / \Z, \Z)$ is minimal:
|
||||
|
||||
This is known as \href{https://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem}{Dirichlet's Approximation Theorem}.
|
||||
|
||||
\item Consider $\R/\Z$ as a topological group.
|
||||
Any subgroup $H$ of $\R / \Z$ is dense in $\R / \Z$
|
||||
or of the form $H = \{ x \in \R / \Z | mx = 0\}$
|
||||
for some $m \in \Z$.
|
||||
|
||||
|
||||
If $H$ contains an irrational element $\alpha$, then
|
||||
it is dense by the previous point.
|
||||
|
||||
Suppose that $H \subseteq \Q / \Z$.
|
||||
Let $D$ be the set of denominators of elements of $H$
|
||||
written as irreducible fractions.
|
||||
If $D$ is finite,
|
||||
then $H = \{x \in \R / \Z : \mathop{lcm}(D)x = 0\}$.
|
||||
Otherwise $H$ is dense, as it contains
|
||||
elements of arbitrarily large denominator.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\nr 3
|
||||
|
@ -35,11 +84,12 @@
|
|||
\nr 4
|
||||
|
||||
% Examinable!
|
||||
% TODO THINK!
|
||||
|
||||
\gist{%
|
||||
% RECAP
|
||||
Let $X$ be a metrizable topological space.
|
||||
|
||||
Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$.
|
||||
Let $X$ be a metrizable topological space
|
||||
and let $K(X) \coloneqq \{ K \subseteq X : K \text{ compact}\}$.
|
||||
|
||||
The Vietoris topology has a basis given by
|
||||
$\{K \subseteq U\}$, $U$ open (type 1)
|
||||
|
@ -54,19 +104,21 @@ $\max_{a \in A} d(a,B)$.
|
|||
On previous sheets, we checked that $d_H$ is a metric.
|
||||
If $X$ is separable, then so is $K(X)$.
|
||||
% END RECAP
|
||||
}{}
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:s12e4}
|
||||
Let $(X,d)$ be a complete metric space.
|
||||
Then so is $(K(X), d_H)$.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
\begin{refproof}{fact:s12e4}
|
||||
We need to show that $(K(X), d_H)$ is complete.
|
||||
|
||||
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
|
||||
Wlog.~$K_n \neq \emptyset$ for all $n$.
|
||||
|
||||
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
|
||||
\text{ $X$ intersects $K_n$ for infinitely many $n$}\}$.
|
||||
\text{ $U \cap K_n \neq \emptyset$ for infinitely many $n$}\}$.
|
||||
|
||||
Equivalently,
|
||||
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
|
||||
|
@ -74,12 +126,12 @@ Then so is $(K(X), d_H)$.
|
|||
(A cluster point is a limit of some subsequence).
|
||||
|
||||
\begin{claim}
|
||||
\label{fact:s12e4:c1}
|
||||
$K_n \to K$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
\begin{refproof}{fact:s12e4:c1}
|
||||
Note that $K$ is closed (the complement is open).
|
||||
|
||||
|
||||
\begin{claim}
|
||||
$K \neq \emptyset$.
|
||||
\end{claim}
|
||||
|
@ -110,7 +162,7 @@ Then so is $(K(X), d_H)$.
|
|||
space, it is complete.
|
||||
|
||||
So it suffices to show that $K$ is totally bounded.
|
||||
Let $\epsilon > 0$
|
||||
Let $\epsilon > 0$.
|
||||
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
|
||||
for all $i,j \ge N$.
|
||||
|
||||
|
@ -151,9 +203,8 @@ Then so is $(K(X), d_H)$.
|
|||
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
|
||||
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
|
||||
(same trick as before).
|
||||
\end{subproof}
|
||||
|
||||
\end{proof}
|
||||
\end{refproof}
|
||||
\end{refproof}
|
||||
|
||||
\begin{fact}
|
||||
If $X$ is compact metrisable,
|
||||
|
@ -174,9 +225,3 @@ Then so is $(K(X), d_H)$.
|
|||
|
||||
|
||||
% TODO complete and totally bounded Sutherland metric and topological spaces
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
\tutorial{15}{2024-01-31}{Additions}
|
||||
|
||||
The following is not relevant for the exam,
|
||||
but gives a more general picture.
|
||||
but aims to give a more general picture.
|
||||
|
||||
Let $X$ be a topological space
|
||||
and let $\cF$ be a filter on $ X$.
|
||||
|
@ -12,6 +12,7 @@ all sets containing an open neighbourhood of $x$,
|
|||
is contained in $\cF$.
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:hdifffilterlimit}
|
||||
$X$ is Hausdorff iff every filter has at most one limit point.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
|
@ -21,6 +22,7 @@ is contained in $\cF$.
|
|||
\end{proof}
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:compactiffufconv}
|
||||
$X$ is (quasi-) compact
|
||||
iff every ultrafilter converges.
|
||||
\end{fact}
|
||||
|
@ -29,7 +31,7 @@ is contained in $\cF$.
|
|||
Let $\cU$ be an ultrafilter.
|
||||
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
|
||||
of closed sets.
|
||||
By the FIP we geht that there exist
|
||||
By the FIP we get that there exist
|
||||
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
|
||||
Let $N$ be an open neighbourhood of $c$.
|
||||
If $N^c \in \cU$, then $c \in N^c \lightning$
|
||||
|
@ -69,17 +71,19 @@ so is $f(\cB)$.
|
|||
\end{fact}
|
||||
\begin{proof}
|
||||
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
|
||||
The RHS is a dense closed set, i.e.~the entire space.
|
||||
\end{proof}
|
||||
|
||||
We can uniquely extend $f\colon X \to Y$ continuous
|
||||
We can uniquely extend a continuous $f\colon X \to Y$
|
||||
to a continuous $\overline{f}\colon \beta X \to Y$
|
||||
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
|
||||
|
||||
Let $V$ be an open neighbourhood of $Y$ in $\overline{f}\left( U) \right) $.
|
||||
Consider $f^{-1}(V)$.
|
||||
Consider the basic open set
|
||||
\[
|
||||
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
|
||||
\]
|
||||
% Let $V$ be an open neighbourhood of $y \in \overline{f}\left( U \right)$.
|
||||
% Consider $f^{-1}(V)$.
|
||||
% Then
|
||||
% \[
|
||||
% \{\cF \in \beta\N : \cF \ni f^{-1}(V)\}
|
||||
% \]
|
||||
% is a basic open set.
|
||||
|
||||
\todo{I missed the last 5 minutes}
|
||||
|
|
Loading…
Reference in a new issue