This commit is contained in:
parent
e887f46a5d
commit
d7809a884a
2 changed files with 14 additions and 1 deletions
|
@ -273,6 +273,7 @@ Recall:
|
|||
A limit of distal flows is distal.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Let $(X,T)$ be a limit of $\Sigma = \{(X_i, T) : i \in I\}$.
|
||||
Suppose that each $(X_i, T)$ is distal.
|
||||
If $(X,T)$ was not distal,
|
||||
|
@ -283,4 +284,7 @@ Recall:
|
|||
But then $g_n \pi_i(x_1) \to \pi_i(z)$
|
||||
and $g_n \pi_i(x_2) \to \pi_i(z)$,
|
||||
which is a contradiction since $(X_i, T)$ is distal.
|
||||
}{Suppose there is a proximal pair $x_1,x_2$.
|
||||
Take $i$ such that $\pi_i(x_1) \neq \pi_i(x_2) \lightning$.
|
||||
}
|
||||
\end{proof}
|
||||
|
|
|
@ -17,7 +17,7 @@ $X$ is always compact metrizable.
|
|||
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
|
||||
% \end{example}
|
||||
\begin{proof}
|
||||
% TODO TODO TODO Think!
|
||||
\gist{%
|
||||
The action of $1$ determines $h$.
|
||||
Consider
|
||||
\[
|
||||
|
@ -82,6 +82,15 @@ $X$ is always compact metrizable.
|
|||
For $\alpha = h$ we get that
|
||||
a flow $\Z \acts X$ corresponds to $\Z \acts K$
|
||||
with $(1,x) \mapsto x + \alpha$.
|
||||
}{
|
||||
\begin{itemize}
|
||||
\item $G \coloneqq \overline{\{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||
\item $G$ is compact (Arzela-Ascoli), abelian topological group (closure of ab. top. group)
|
||||
\item Take any $x \in G$.
|
||||
\item $Gx$ is compact (since $g \mapsto gx$ is continuous and $G$ is compact)
|
||||
\item Stabilizer $G_x$ is closed. $K \coloneqq \faktor{G}{G_x}$, $K \to X, fG_x \mapsto f(x)$.
|
||||
\end{itemize}
|
||||
}
|
||||
\end{proof}
|
||||
\begin{definition}
|
||||
Let $(X,T)$ be a flow
|
||||
|
|
Loading…
Reference in a new issue