This commit is contained in:
parent
fbf52d882a
commit
e887f46a5d
9 changed files with 92 additions and 96 deletions
|
@ -127,7 +127,7 @@ since $X^X$ has these properties.
|
|||
|
||||
\begin{lemma}[Ellis–Numakura]
|
||||
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
||||
Every compact semigroup
|
||||
Every non-empty compact semigroup
|
||||
contains an \vocab{idempotent} element,
|
||||
i.e.~$f$ such that $f^2 = f$.
|
||||
\end{lemma}
|
||||
|
|
|
@ -37,10 +37,9 @@ Let $I$ be a linear order
|
|||
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
|
||||
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
|
||||
\end{IEEEeqnarray*}
|
||||
\todo{Exercise sheet 12}
|
||||
$S$ is Borel.
|
||||
$S$ is Borel.\footnote{cf.~\yaref{s12e1}}
|
||||
|
||||
We will % TODO ?
|
||||
We will
|
||||
construct a reduction
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
\lecture{24}{2024-01-23}{Combinatorics!}
|
||||
|
||||
% ANKI 2
|
||||
|
||||
|
||||
\subsection{Applications to Combinatorics} % Ramsey Theory}
|
||||
|
||||
% TODO Define Ultrafilter
|
||||
|
||||
\begin{definition}
|
||||
An \vocab{ultrafilter} on $\N$ (or any other set)
|
||||
is a family $\cU \subseteq \cP(\N)$
|
||||
|
@ -44,6 +44,7 @@
|
|||
for $\{ n \in \N : \phi(n)\} \in \cU$.
|
||||
We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$.
|
||||
\end{notation}
|
||||
\gist{%
|
||||
\begin{observe}
|
||||
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
||||
|
||||
|
@ -53,6 +54,7 @@
|
|||
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
|
||||
\end{enumerate}
|
||||
\end{observe}
|
||||
}{}
|
||||
\begin{lemma}
|
||||
\label{lem:ultrafilterlimit}
|
||||
Let $X $ be a compact Hausdorff space.
|
||||
|
@ -72,6 +74,8 @@
|
|||
\end{notation}
|
||||
\begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works
|
||||
for metric spaces.}
|
||||
\gist{
|
||||
For metric spaces:
|
||||
Whenever we write $X = Y \cup Z$
|
||||
we have $(\cU n) x_n \in Y$
|
||||
or $(\cU n) x_n \in Z$.
|
||||
|
@ -86,8 +90,13 @@
|
|||
$C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$
|
||||
and
|
||||
$C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$.
|
||||
It is clear that we can do this for metric spaces,
|
||||
but such partition can be found for compact Hausdorff spaces as well.
|
||||
It is clear that we can do this for metric spaces.
|
||||
|
||||
}{}
|
||||
See \yaref{thm:uflimit} for the full proof.
|
||||
See
|
||||
\yaref{fact:compactiffufconv} and
|
||||
\yaref{fact:hdifffilterlimit} for a more general statement.
|
||||
\end{refproof}
|
||||
|
||||
Let $\beta \N$ be the Čech-Stone compactification of $\N$,
|
||||
|
@ -157,7 +166,6 @@ is not necessarily continuous.
|
|||
\[
|
||||
\forall n.~\exists k < M.~ T^{n+k}(x) \in G.
|
||||
\]
|
||||
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
Let $\cU, \cV \in \beta\N$
|
||||
|
|
|
@ -7,15 +7,17 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
where a basis consist of sets
|
||||
$V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$.
|
||||
|
||||
\gist{%
|
||||
(For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$
|
||||
and $\beta\N = V_\N$.)
|
||||
}{}
|
||||
|
||||
\item Note also that for $A, B \subseteq \N$,
|
||||
$V_{A \cup B} = V_A \cup V_B$,
|
||||
$V_{A^c} = \beta\N \setminus V_A$.
|
||||
\end{itemize}
|
||||
\end{fact}
|
||||
|
||||
\gist{%
|
||||
\begin{observe}
|
||||
\label{ob:bNclopenbasis}
|
||||
Note that the basis is clopen. In particular
|
||||
|
@ -25,6 +27,7 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$,
|
||||
so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$.
|
||||
\end{observe}
|
||||
}{}
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:bNhd}
|
||||
|
@ -54,12 +57,14 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
$\bigcap_{j=1}^k F_{i_j} \neq \emptyset$.
|
||||
|
||||
We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$.
|
||||
\gist{%
|
||||
Replacing each $F_i$ by $V_{A_j^i}$ such
|
||||
that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$
|
||||
(cf.~\yaref{ob:bNclopenbasis})
|
||||
we may assume that $F_i$ is of the form $V_{A_i}$.
|
||||
We get $\{F_i = V_{A_i} : i \in I\}$
|
||||
with the finite intersection property.
|
||||
}{Wlog.~$F_i = V_{A_i}$.}
|
||||
Hence
|
||||
$\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$
|
||||
has the finite intersection property.
|
||||
|
@ -78,11 +83,10 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
\item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$.
|
||||
\item $\N \subseteq \beta\N$ is dense.
|
||||
\end{itemize}
|
||||
\todo{Easy exercise}
|
||||
% TODO write down (exercise)
|
||||
\end{fact}
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:uflimit}
|
||||
For every compact Hausdorff space $X$,
|
||||
a sequence $(x_n)$ in $X$,
|
||||
and $\cU \in \beta\N$,
|
||||
|
@ -133,7 +137,6 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
% agree everywhere (fact section)
|
||||
\end{proof}
|
||||
\begin{trivial}+
|
||||
More generally,
|
||||
$\beta$ is a functor from the category of topological
|
||||
spaces to the category of compact Hausdorff spaces.
|
||||
It is left adjoint to the inclusion functor.
|
||||
|
@ -222,13 +225,12 @@ to obtain
|
|||
Take $x_2 > x_1$ that satisfies this.
|
||||
\item Suppose we have chosen $\langle x_i : i < n \rangle$.
|
||||
Since $\cU$ is idempotent, we have
|
||||
\[
|
||||
(\cU n)[
|
||||
n \in P
|
||||
\land (\cU_k) n + k \in P
|
||||
\land \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)
|
||||
\land (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
|
||||
\]
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
(\cU n)&& n \in P\\
|
||||
&\land& (\cU_k) n + k \in P\\
|
||||
&\land& \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)\\
|
||||
&\land& (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
|
||||
\end{IEEEeqnarray*}
|
||||
Chose $x_n > x_{n-1}$ that satisfies this.
|
||||
\end{itemize}
|
||||
Set $H \coloneqq \{x_i : i < \omega\}$.
|
||||
|
@ -237,6 +239,3 @@ to obtain
|
|||
|
||||
Next time we'll see another proof of this theorem.
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -3,12 +3,36 @@
|
|||
% Points: 15 / 16
|
||||
|
||||
\nr 1
|
||||
\todo{handwritten solution}
|
||||
Let $(X,d)$ be a metric space and $\emptyset \neq A \subseteq X$.
|
||||
Let $d(x,A) \coloneqq \inf(d(x,a) : a \in A\}$.
|
||||
|
||||
\begin{itemize}
|
||||
\item $d(-,A)$ is uniformly continuous:
|
||||
|
||||
Clearly $|d(x,A) - d(y,A)| \le d(x,y)$.
|
||||
\todo{Add details}
|
||||
\item $d(x,A) = 0 \iff x \in \overline{A}$.
|
||||
|
||||
$d(x,A) = 0$ iff there is a sequence in $A$
|
||||
converging towards $x$ iff $x \in \overline{A}$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\nr 2
|
||||
|
||||
Let $X$ be a discrete space.
|
||||
For $f,g \in X^{\N}$ define
|
||||
\[
|
||||
d(f,g) \coloneqq \begin{cases}
|
||||
(1 + \min \{n: f(n) \neq g(n)\})^{-1} &: f \neq g,\\
|
||||
0 &: f= g.
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item $d$ is an ultrametric:
|
||||
\item $d$ is an \vocab{ultrametric},
|
||||
i.e.~$d(f,g) \le \max \{d(f,h), d(g,h)\}$ for all $f,g,h \in X^{\N}$ :
|
||||
|
||||
Let $f,g,h \in X^{\N}$.
|
||||
|
||||
|
@ -70,10 +94,15 @@
|
|||
|
||||
\nr 3
|
||||
|
||||
Consider $\N$ as a discrete space and $\N^{\N}$ with the product topology.
|
||||
Let
|
||||
\[
|
||||
S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
|
||||
\]
|
||||
\begin{enumerate}[(a)]
|
||||
\item $S_{\infty}$ is a Polish space:
|
||||
|
||||
From (2) we know that $\N^{\N}$ is Polish.
|
||||
From \yaref{s1e2} we know that $\N^{\N}$ is Polish.
|
||||
Hence it suffices to show that $S_{\infty}$ is $G_{\delta}$
|
||||
with respect to $\N^\N$.
|
||||
|
||||
|
@ -111,69 +140,9 @@
|
|||
Clearly there cannot exist a finite subcover
|
||||
as $B$ is the disjoint union of the $B_j$.
|
||||
|
||||
% TODO Think about this
|
||||
\end{enumerate}
|
||||
|
||||
\nr 4
|
||||
|
||||
% (uniform metric)
|
||||
%
|
||||
% \begin{enumerate}[(a)]
|
||||
% \item $d_u$ is a metric on $\cC(X,Y)$:
|
||||
%
|
||||
% It is clear that $d_u(f,f) = 0$.
|
||||
%
|
||||
% Let $f \neq g$. Then there exists $x \in X$ with
|
||||
% $f(x) \neq g(x)$, hence $d_u(f,g) \ge d(f(x), g(x)) > 0$.
|
||||
%
|
||||
% Since $d$ is symmetric, so is $d_u$.
|
||||
%
|
||||
% Let $f,g,h \in \cC(X,Y)$.
|
||||
% Take some $\epsilon > 0$
|
||||
% choose $x_1, x_2 \in X$
|
||||
% with $d_u(f,g) \le d(f(x_1), g(x_1)) + \epsilon$,
|
||||
% $d_u(g,h) \le d(g(x_2), h(x_2)) + \epsilon$.
|
||||
%
|
||||
% Then for all $x \in X$
|
||||
% \begin{IEEEeqnarray*}{rCl}
|
||||
% d(f(x), h(x)) &\le &
|
||||
% d(f(x), g(x)) + d(g(x), h(x))\\
|
||||
% &\le & d(f(x_1), g(x_1)) + d(g(x_2), h(x_2))-2\epsilon\\
|
||||
% &\le & d_u(f,g) + d_u(g,h) - 2\epsilon.
|
||||
% \end{IEEEeqnarray*}
|
||||
% Thus $d_u(f,g) \le d_u(f,g) + d_u(g,h) - 2\epsilon$.
|
||||
% Taking $\epsilon \to 0$ yields the triangle inequality.
|
||||
%
|
||||
% \item $\cC(X,Y)$ is a Polish space:
|
||||
% \todo{handwritten solution}
|
||||
%
|
||||
% \begin{itemize}
|
||||
% \item $d_u$ is a complete metric:
|
||||
%
|
||||
% Let $(f_n)_n$ be a Cauchy series with respect to $d_u$.
|
||||
%
|
||||
% Then clearly $(f_n(x))_n$ is a Cauchy sequence with respect
|
||||
% to $d$ for every $x$.
|
||||
% Hence there exists a pointwise limit $f$ of the $f_n$.
|
||||
% We need to show that $f$ is continuous.
|
||||
%
|
||||
% %\todo{something something uniform convergence theorem}
|
||||
%
|
||||
% \item $(\cC(X,Y), d_u)$ is separable:
|
||||
%
|
||||
% Since $Y$ is separable, there exists a countable
|
||||
% dense subset $S \subseteq Y$.
|
||||
%
|
||||
% Consider $\cC(X,S) \subseteq \cC(X,Y)$.
|
||||
% Take some $f \in \cC(X,Y)$.
|
||||
% Since $X$ is compact,
|
||||
%
|
||||
%
|
||||
% % TODO
|
||||
%
|
||||
% \end{itemize}
|
||||
% \end{enumerate}
|
||||
|
||||
\begin{fact}
|
||||
Let $X $ be a compact Hausdorff space.
|
||||
Then the following are equivalent:
|
||||
|
@ -205,7 +174,7 @@
|
|||
Let $X$ be compact Polish\footnote{compact metrisable $\implies$ compact Polish}
|
||||
and $Y $ Polish.
|
||||
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
|
||||
Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
||||
Consider the \vocab{uniform metric} $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
||||
Clearly $d_u$ is a metric.
|
||||
|
||||
\begin{claim}
|
||||
|
@ -243,7 +212,7 @@ Clearly $d_u$ is a metric.
|
|||
for each $y \in X_m$.
|
||||
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
|
||||
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
|
||||
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
||||
we find $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
||||
since $f$ is uniformly continuous.
|
||||
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
|
||||
We have $d_u(f,g) \le \eta$,
|
||||
|
|
|
@ -12,6 +12,14 @@
|
|||
|
||||
\nr 1
|
||||
|
||||
Let $X$ be a Polish space.
|
||||
Then there exists an injection $f\colon X \to 2^\omega$
|
||||
such that for each $n < \omega$,
|
||||
the set $f^{-1}(\{(y_n) \in 2^\omega : y_n = 1\})$
|
||||
is open.
|
||||
Moreover if $V \subseteq 2^{ \omega}$ is closed,
|
||||
then $f^{-1}(V)$ is $G_\delta$.
|
||||
|
||||
Let $(U_i)_{i < \omega}$ be a countable base of $X$.
|
||||
Define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
|
@ -19,6 +27,7 @@ Define
|
|||
x &\longmapsto & (x_i)_{i < \omega}
|
||||
\end{IEEEeqnarray*}
|
||||
where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise.
|
||||
\gist{
|
||||
Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$
|
||||
is open.
|
||||
We have that $f$ is injective since $X$ is T1.
|
||||
|
@ -51,17 +60,21 @@ Since $2^{n} \setminus \left( \prod_{i < n} X_i \right)$
|
|||
is finite, we get that
|
||||
$f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
|
||||
is $G_\delta$ as a finite union of $G_{\delta}$ sets.
|
||||
}{}
|
||||
|
||||
|
||||
|
||||
\nr 2
|
||||
Let $X$ be a Polish space. Then $X$ is homeomorphic to a closed subspace of $\R^{ \omega}$ :
|
||||
\todo{handwritten solution}
|
||||
(b)
|
||||
Let $f(x^{(i)})$ be a sequence in $f(X)$.
|
||||
Suppose that $f(x^{(i)}) \to y$.
|
||||
We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
|
||||
Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
|
||||
Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
||||
% \begin{itemize}
|
||||
% \item
|
||||
% Let $f(x^{(i)})$ be a sequence in $f(X)$.
|
||||
% Suppose that $f(x^{(i)}) \to y$.
|
||||
% We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
|
||||
% Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
|
||||
% Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
||||
% \end{itemize}
|
||||
|
||||
|
||||
\nr 3
|
||||
|
@ -130,6 +143,13 @@ Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
|||
\end{proof}
|
||||
|
||||
\nr 4
|
||||
|
||||
Define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f\colon \omega^{\omega} &\longrightarrow & 2^\omega \\
|
||||
(x_n)&\longmapsto & 0^{x_0} 1 0^{x_1} 1 \ldots.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
\begin{enumerate}[(1)]
|
||||
\item $f$ is a topological embedding:
|
||||
Consider a basic open set
|
||||
|
|
|
@ -8,7 +8,7 @@ Let $A \neq \emptyset$ be discrete.
|
|||
For $D \subseteq A^{\omega}$,
|
||||
let
|
||||
\[
|
||||
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}..
|
||||
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}.
|
||||
\]
|
||||
\begin{enumerate}[(a)]
|
||||
\item For any $D \subseteq A^\omega$, $T_D$ is a pruned tree:
|
||||
|
|
|
@ -63,7 +63,7 @@ Flows are always on non-empty spaces $X$.
|
|||
\begin{proof}
|
||||
(i) $\implies$ (ii):
|
||||
Let $(Y,T)$ be a subflow of $(X,T)$.
|
||||
take $y \in Y$. Then $Ty$ is dense in mKX.
|
||||
take $y \in Y$. Then $Ty$ is dense in $X$.
|
||||
But $Ty \subseteq Y$, so $Y$ is dense in $X$.
|
||||
Since $Y$ is closed, we get $Y = X$.
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@ all sets containing an open neighbourhood of $x$,
|
|||
is contained in $\cF$.
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:hdifffilterlimit}
|
||||
$X$ is Hausdorff iff every filter has at most one limit point.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
|
|
Loading…
Reference in a new issue