definition group action
Some checks failed
Build latex and deploy / checkout (push) Has been cancelled
Some checks failed
Build latex and deploy / checkout (push) Has been cancelled
This commit is contained in:
parent
f0bab3e1ac
commit
c59fdb1c9d
1 changed files with 26 additions and 0 deletions
|
@ -1,5 +1,31 @@
|
|||
\lecture{15}{2023-12-05}{}
|
||||
|
||||
Recall:
|
||||
\begin{definition}+
|
||||
Let $X$ be a set.
|
||||
A \vocab{group action} of a group $G$ on $X$
|
||||
is a function
|
||||
$\alpha\colon G \times X \to X$
|
||||
such that
|
||||
\begin{itemize}
|
||||
\item $\forall x \in X.~\alpha(1_G,x) = x$,
|
||||
\item $\forall g,h \in G, x \in X.~\alpha(gh,x) = \alpha(g,\alpha(h,x))$.
|
||||
\end{itemize}
|
||||
|
||||
Often we will abbreviate $\alpha(g,x)$ as $g\cdot x$.
|
||||
\end{definition}
|
||||
\begin{remark}+
|
||||
Group actions of a group $G$ on a set $X$
|
||||
correspond to group-homomorphisms
|
||||
$G \to \Sym(X)$.
|
||||
Indeed for a group action $\alpha\colon G \times X \to X$
|
||||
consider
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
G&\longrightarrow & \Sym(X) \\
|
||||
g&\longmapsto & (x \mapsto g \cdot x).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{remark}
|
||||
|
||||
\begin{theorem}[The Boundedness Theorem]
|
||||
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
|
||||
|
||||
|
|
Loading…
Reference in a new issue