diff --git a/inputs/lecture_15.tex b/inputs/lecture_15.tex index 38318ea..0d0fd8e 100644 --- a/inputs/lecture_15.tex +++ b/inputs/lecture_15.tex @@ -1,5 +1,31 @@ \lecture{15}{2023-12-05}{} +Recall: +\begin{definition}+ + Let $X$ be a set. + A \vocab{group action} of a group $G$ on $X$ + is a function + $\alpha\colon G \times X \to X$ + such that + \begin{itemize} + \item $\forall x \in X.~\alpha(1_G,x) = x$, + \item $\forall g,h \in G, x \in X.~\alpha(gh,x) = \alpha(g,\alpha(h,x))$. + \end{itemize} + + Often we will abbreviate $\alpha(g,x)$ as $g\cdot x$. +\end{definition} +\begin{remark}+ + Group actions of a group $G$ on a set $X$ + correspond to group-homomorphisms + $G \to \Sym(X)$. + Indeed for a group action $\alpha\colon G \times X \to X$ + consider + \begin{IEEEeqnarray*}{rCl} + G&\longrightarrow & \Sym(X) \\ + g&\longmapsto & (x \mapsto g \cdot x). + \end{IEEEeqnarray*} +\end{remark} + \begin{theorem}[The Boundedness Theorem] \yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}