This commit is contained in:
parent
59d595f9ef
commit
ba609dfed0
5 changed files with 29 additions and 28 deletions
|
@ -226,8 +226,8 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
|||
\]
|
||||
$X \setminus B_q = \{a \in X : \Gamma(a) < q\}$
|
||||
is open, i.e.~$B_q$ is closed.
|
||||
Note that $x \in F_q \coloneqq B_q \setminus B_q^\circ$
|
||||
and $B_q \setminus B_q^\circ$ is nwd
|
||||
Note that $x \in F_q \coloneqq B_q \setminus \inter(B_q)$
|
||||
and $B_q \setminus \inter(B_q)$ is nwd
|
||||
as it is closed and has empty interior,
|
||||
so $\bigcup_{q \in \Q} F_q$ is meager.
|
||||
}
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
\subsection{The Order of a Flow}
|
||||
\lecture{19}{2023-12-19}{Orders of Flows}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
|
||||
See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}.
|
||||
|
||||
|
||||
|
@ -195,8 +192,8 @@ More generally we can show:
|
|||
on the fibers of $Y$ over $Z_2$
|
||||
and invariant under $T$.
|
||||
|
||||
$\sigma$ is a metric, since if
|
||||
if $\pi_2(y) = \pi_2(y')$ and $\sigma(y,y') = 0$,
|
||||
$\sigma$ is a metric,
|
||||
since if $\pi_2(y) = \pi_2(y')$ and $\sigma(y,y') = 0$,
|
||||
then $\pi_1(y) = \pi_1(y')$ or $y = y'$.
|
||||
\end{proof}
|
||||
|
||||
|
@ -223,6 +220,7 @@ More generally we can show:
|
|||
For this, we show that for all $\xi < \eta$,
|
||||
$(X_\xi', T)$ is a factor of $(X_\xi ,T)$
|
||||
using transfinite induction.
|
||||
|
||||
% https://q.uiver.app/#q=WzAsMTEsWzAsMSwiWCJdLFswLDIsIlhfXFxldGEiXSxbMCwwLCJYJ197XFxldGEnfSJdLFsxLDIsIlxcZG90cyJdLFsxLDAsIlxcZG90cyJdLFs0LDAsIlhfMSciXSxbNCwyLCJYXzEiXSxbMywwLCJYJ18yIl0sWzMsMiwiWF8yIl0sWzIsMCwiWCdfMyJdLFsyLDIsIlhfMyJdLFsyLDAsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMSwiIiwyLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTAsOF0sWzgsNl0sWzcsNV0sWzksN10sWzEwLDksIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs4LDcsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs2LDUsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFsxLDEwLCJcXHBpXzMiLDIseyJjdXJ2ZSI6MX1dLFsxLDgsIlxccGlfMiIsMix7ImN1cnZlIjozfV0sWzEsNiwiXFxwaV8xIiwyLHsiY3VydmUiOjV9XSxbMiw5LCJcXHBpJ18zIiwwLHsiY3VydmUiOi0xfV0sWzIsNywiXFxwaSdfMiIsMCx7ImN1cnZlIjotM31dLFsyLDUsIlxccGknXzEiLDAseyJjdXJ2ZSI6LTV9XV0=
|
||||
\[\begin{tikzcd}
|
||||
{X'_{\eta'}} & \dots & {X'_3} & {X'_2} & {X_1'} \\
|
||||
|
@ -244,7 +242,8 @@ More generally we can show:
|
|||
\arrow["{\pi'_2}", curve={height=-18pt}, from=1-1, to=1-4]
|
||||
\arrow["{\pi'_1}", curve={height=-30pt}, from=1-1, to=1-5]
|
||||
\end{tikzcd}\]
|
||||
% TODO: induction start?
|
||||
|
||||
We'll only show the successor step:
|
||||
|
||||
Suppose we have
|
||||
$(X'_\xi, T) = \theta((X_\xi, T)$.
|
||||
|
@ -253,18 +252,21 @@ More generally we can show:
|
|||
\[Y \coloneqq \{(\pi_\xi(x), \pi'_{\xi+1}(x)) \in X_\xi \times X'_{\xi+ 1}: x \in X\}.\]
|
||||
Then
|
||||
|
||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIoWF97XFx4aSsxfSxUKSJdLFsyLDAsIihZLFQpIl0sWzMsMSwiKFgnX3tcXHhpKzF9LFQpIl0sWzIsMiwiKFgnX1xceGksVCkiXSxbMSwxLCIoWF9cXHhpLFQpIl0sWzAsNCwiXFx0ZXh0e21heC5+aXNvfSIsMV0sWzQsMywiXFx0aGV0YSIsMV0sWzIsMywie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsNCwie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsMl0sWzAsMSwiIiwwLHsiY3VydmUiOi0xLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
|
||||
\[\begin{tikzcd}
|
||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIoWF97XFx4aSsxfSxUKSJdLFsyLDAsIihZLFQpIl0sWzMsMSwiKFgnX3tcXHhpKzF9LFQpIl0sWzIsMiwiKFgnX1xceGksVCkiXSxbMSwxLCIoWF9cXHhpLFQpIl0sWzAsNCwiXFx0ZXh0e21heC5+aXNvfSIsMV0sWzQsMywiXFx0aGV0YSIsMV0sWzIsMywie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsNCwie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsMl0sWzAsMSwiIiwwLHsiY3VydmUiOi0xLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwyLCJcXHBpJyIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs3LDMsIlxcdGhldGEnIiwwLHsibGV2ZWwiOjEsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDgsIlxccGkiLDIseyJsZXZlbCI6MSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoibm9uZSJ9LCJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d
|
||||
\begin{tikzcd}
|
||||
{(X_{\xi+1},T)} && {(Y,T)} \\
|
||||
& {(X_\xi,T)} && {(X'_{\xi+1},T)} \\
|
||||
&& {(X'_\xi,T)}
|
||||
\arrow["{\text{max.~iso}}"{description}, from=1-1, to=2-2]
|
||||
\arrow["\theta"{description}, from=2-2, to=3-3]
|
||||
\arrow["{{\color{orange}\text{iso}}}"{description}, from=2-4, to=3-3]
|
||||
\arrow["{{\color{orange}\text{iso}}}"{description}, from=1-3, to=2-2]
|
||||
\arrow[""{name=0, anchor=center, inner sep=0}, "{{\color{orange}\text{iso}}}"{description}, from=2-4, to=3-3]
|
||||
\arrow[""{name=1, anchor=center, inner sep=0}, "{{\color{orange}\text{iso}}}"{description}, from=1-3, to=2-2]
|
||||
\arrow[from=1-3, to=2-4]
|
||||
\arrow[curve={height=-6pt}, dashed, from=1-1, to=1-3]
|
||||
\end{tikzcd}\]
|
||||
\arrow["{\pi'}", draw=none, from=1-3, to=2-4]
|
||||
\arrow["{\theta'}", draw=none, from=0, to=3-3]
|
||||
\arrow["\pi"', draw=none, from=1-3, to=1]
|
||||
\end{tikzcd}
|
||||
|
||||
The diagram commutes, since all maps are the induced maps.
|
||||
By definition of $Y$ is clear that $\pi$ and $\pi'$ separate points in $Y$.
|
||||
|
@ -277,6 +279,9 @@ More generally we can show:
|
|||
In particular,
|
||||
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
||||
\end{proof}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
||||
\label{ex:19:inftorus}
|
||||
Let $X$ be the infinite torus
|
||||
|
|
|
@ -86,7 +86,7 @@ Let $\mathbb{K} = S^1$
|
|||
and $I$ a countable linear order.
|
||||
Let $\mathbb{K}^I$ be the product of $|I|$ many $\mathbb{K}$,
|
||||
$\mathbb{K}^{<i} \coloneqq \mathbb{K}^{\{j : j < i\}}$
|
||||
and $\pi_{i}\colon \mathbb{K}^{I} \to \mathbb{K}^{<i}$\todo{maybe call it $\pi_{<i}$?}
|
||||
and $\pi_{i}\colon \mathbb{K}^{I} \to \mathbb{K}^{<i}$% \todo{maybe call it $\pi_{<i}$?}
|
||||
the projection.
|
||||
|
||||
Let $\mathbb{K}_I \coloneqq \prod_{i \in I} C(\mathbb{K}^{<i}, \mathbb{K})$.
|
||||
|
|
|
@ -17,17 +17,19 @@
|
|||
we have $X \in \cU \lor \N \setminus X \in \cU$.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
\gist{
|
||||
\begin{remark}
|
||||
\begin{itemize}
|
||||
\item If $X \cup Y \in \cU$ then $X \in \cU \lor Y$ or $Y \in \cU$:
|
||||
\item If $X \cup Y \in \cU$ then $X \in \cU$ or $Y \in \cU$:
|
||||
Consider $((\N \setminus X) \cap (\N \setminus Y) = \N \setminus (X \cup Y)$.
|
||||
\item Every filter can be extended to an ultrafilter.
|
||||
(Zorn's lemma)
|
||||
\end{itemize}
|
||||
\end{remark}
|
||||
}{}
|
||||
\begin{definition}
|
||||
An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial}
|
||||
if it is of the form
|
||||
An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial}
|
||||
iff it is of the form
|
||||
\[
|
||||
\hat{n} = \{X \subseteq \N : n \in X\}.
|
||||
\]
|
||||
|
@ -46,9 +48,9 @@
|
|||
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
||||
|
||||
\begin{enumerate}[(1)]
|
||||
\item $(\cU n) (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$.
|
||||
\item $(\cU n) (\phi(n) \lor \psi(m)) \iff (\cU n) \phi(n) \lor (\cU n) \psi(n)$.
|
||||
\item $(\cU n) \lnot \phi(n) \iff \lnot (\cU n) \phi(n)$.
|
||||
\item $(\cU n) ~ (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$.
|
||||
\item $(\cU n) ~ (\phi(n) \lor \psi(m)) \iff (\cU n) ~ \phi(n) \lor (\cU n) ~ \psi(n)$.
|
||||
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
|
||||
\end{enumerate}
|
||||
\end{observe}
|
||||
\begin{lemma}
|
||||
|
@ -59,7 +61,7 @@
|
|||
there is a unique $x \in X$,
|
||||
such that
|
||||
\[
|
||||
(\cU n) (x_n \in G)
|
||||
(\cU n)~(x_n \in G)
|
||||
\]
|
||||
for every neighbourhood%
|
||||
\footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.}
|
||||
|
|
|
@ -17,18 +17,12 @@ Then $t_n y \to (0) = t_n x$.
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% TODO this is redundant
|
||||
\begin{refproof}{fact:isometriciffequicontinuous}.
|
||||
|
||||
$d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$
|
||||
induce the same topology.
|
||||
Let $\tau, \tau'$ be the corresponding topologies.
|
||||
|
||||
$\tau \subseteq \tau'$ easy,
|
||||
$\tau' \subseteq \tau'$ : use equicontinuity.
|
||||
|
||||
|
||||
\end{refproof}
|
||||
|
|
Loading…
Reference in a new issue