This commit is contained in:
parent
3917993d93
commit
acb56df1c2
3 changed files with 148 additions and 107 deletions
|
@ -135,6 +135,7 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
|
||||||
|
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
|
\label{thm:universals11}
|
||||||
Let $X,Y$ be uncountable Polish spaces.
|
Let $X,Y$ be uncountable Polish spaces.
|
||||||
There exists a $Y$-universal $\Sigma^1_1(X)$ set.
|
There exists a $Y$-universal $\Sigma^1_1(X)$ set.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
|
@ -153,13 +153,14 @@ We will not proof this in this lecture.
|
||||||
|
|
||||||
\subsection{Ill-Founded Trees}
|
\subsection{Ill-Founded Trees}
|
||||||
|
|
||||||
|
\gist{%
|
||||||
Recall that a \vocab{tree} on $\N$ is a subset of
|
Recall that a \vocab{tree} on $\N$ is a subset of
|
||||||
$\N^{<\N}$
|
$\N^{<\N}$
|
||||||
closed under taking initial segments.
|
closed under taking initial segments.
|
||||||
|
|
||||||
We now identify trees with their characteristic functions,
|
We now identify trees with their characteristic functions,
|
||||||
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
|
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$}%
|
||||||
|
{We identify trees $T \subseteq \N^{<\N}$ with their characteristic functions:}
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\
|
\One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\
|
||||||
x &\longmapsto & \begin{cases}
|
x &\longmapsto & \begin{cases}
|
||||||
|
@ -167,9 +168,9 @@ i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
|
||||||
0 &: x \not\in T.
|
0 &: x \not\in T.
|
||||||
\end{cases}
|
\end{cases}
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.
|
\gist{Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.}{}
|
||||||
|
|
||||||
Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
Let \vocab{$\Tr$} $ \coloneqq \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
||||||
|
|
||||||
\begin{observe}
|
\begin{observe}
|
||||||
\[
|
\[
|
||||||
|
@ -177,6 +178,7 @@ Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\
|
||||||
\]
|
\]
|
||||||
is closed (where we take the topology of the Cantor space).
|
is closed (where we take the topology of the Cantor space).
|
||||||
\end{observe}
|
\end{observe}
|
||||||
|
\gist{%
|
||||||
Indeed, for any $ s \in \N^{<\N}$
|
Indeed, for any $ s \in \N^{<\N}$
|
||||||
we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$
|
we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$
|
||||||
and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen.
|
and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen.
|
||||||
|
@ -185,6 +187,4 @@ In particular for $s$ fixed,
|
||||||
we have that
|
we have that
|
||||||
\[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\]
|
\[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\]
|
||||||
is clopen in ${2^{\N}}^{<\N}$.
|
is clopen in ${2^{\N}}^{<\N}$.
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -21,102 +21,136 @@
|
||||||
T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1.
|
T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1.
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
Consider $D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}$.
|
Consider
|
||||||
Note that this set is closed in $\Tr \times \cN$,
|
\[D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}.\]
|
||||||
since it is a countable intersection of clopen sets.
|
\gist{%
|
||||||
% TODO Why clopen?
|
Note that this set is closed in $\Tr \times \cN$,
|
||||||
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$.
|
since it is a countable intersection of clopen sets.
|
||||||
|
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$.
|
||||||
|
}{$D \overset{\text{closed}}{\subseteq} \Tr \times \cN$ and $\IF = \proj_{\Tr}(D)$.}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
An analytic set $B$ in some Polish space $Y$
|
An analytic set $B$ in some Polish space $Y$
|
||||||
is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete})
|
is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete})
|
||||||
|
\gist{%
|
||||||
iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$,
|
iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$,
|
||||||
there exists a Borel function $f\colon X\to Y$
|
there exists a Borel function $f\colon X\to Y$
|
||||||
such that $x \in A \iff f(x) \in B$.
|
such that $x \in A \iff f(x) \in B$,
|
||||||
|
i.e.~$f^{-1}(B) = A$.
|
||||||
|
}{%
|
||||||
|
iff for any $A \in \Sigma^1_1(X)$, $X$ Polish
|
||||||
|
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.}
|
||||||
|
|
||||||
Similarly, define \vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete}).
|
\gist{%
|
||||||
|
Similarly, a conalytic set $B$ is called
|
||||||
|
\vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete})
|
||||||
|
iff for any $A \subseteq \Pi^1_1(X)$
|
||||||
|
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.
|
||||||
|
}{Similarly we define \vocab{complete coanalytic} / \vocab{$\Pi_1^1$-complete}.}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{observe}
|
\begin{observe}
|
||||||
\leavevmode
|
\leavevmode
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete.
|
\item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete.
|
||||||
\item $\Sigma^1_1$-complete sets are never Borel:
|
\item $\Sigma^1_1$-complete sets are never Borel%
|
||||||
Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$.
|
\gist{:
|
||||||
Take $A \in \Sigma^1_1(X) \setminus \cB(X)$
|
Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$.
|
||||||
and $f\colon X \to Y$ Borel.
|
Take $A \in \Sigma^1_1(X) \setminus \cB(X)$%
|
||||||
But then $f^{-1}(B)$ is Borel.
|
\footnote{e.g.~\yaref{thm:universals11}}
|
||||||
|
and $f\colon X \to Y$ Borel.
|
||||||
|
But then we get that $f^{-1}(B)$ is Borel $\lightnig$.
|
||||||
|
}{.}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{observe}
|
\end{observe}
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{thm:lec12:1}
|
\label{thm:lec12:1}
|
||||||
Suppose that $A \subseteq \cN$ is analytic.
|
Suppose that $A \subseteq \cN$ is analytic.
|
||||||
Then there is $f\colon \cN \to \Tr$\todo{Borel?}
|
\gist{%
|
||||||
such that $x \in A \iff f(x)$ is ill-founded.
|
Then there is a continuous function $f\colon \cN \to \Tr$
|
||||||
|
such that $x \in A \iff f(x)$ is ill-founded,
|
||||||
|
i.e.~$A = f^{-1}(\IF)$.
|
||||||
|
}{%
|
||||||
|
Then there exists $f\colon \cN \to \Tr$ continuous
|
||||||
|
such that $A = f^{-1}(\IF)$.
|
||||||
|
}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
For the proof we need some prerequisites:
|
For the proof we need some prerequisites:
|
||||||
\begin{enumerate}[1.]
|
|
||||||
\item Recall that for $S$ countable,
|
\gist{%
|
||||||
the pruned\footnote{no maximal elements, in particular this implies ill-founded if the tree is non empty.} trees
|
Recall that for $S$ countable,
|
||||||
$T \subseteq S^{<\N}$ on $S$ correspond
|
the pruned%
|
||||||
to closed subsets of $S^{\N}$:
|
\footnote{no maximal elements,
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
in particular this implies ill-founded if the tree is non empty.
|
||||||
T &\longmapsto & [T]\\
|
} trees $T \subseteq S^{<\N}$ on $S$ correspond
|
||||||
\{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\
|
to closed subsets of $S^{\N}$:%
|
||||||
\end{IEEEeqnarray*}
|
\footnote{cf.~\yaref{s3e1} (c)}
|
||||||
\todo{Copy from exercises}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\item \leavevmode\begin{definition}
|
T &\longmapsto & [T]\\
|
||||||
If $T$ is a tree on $\N \times \N$
|
\{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\
|
||||||
and $x \in \cN$,
|
\end{IEEEeqnarray*}
|
||||||
then the \vocab{section at $x$}
|
}{%
|
||||||
%denoted $T(x)$,
|
For $S$ countable,
|
||||||
is the following tree on $\N$ :
|
pruned trees on $S$ correspond to closed subsets of $S^{\N}$
|
||||||
\[
|
via $T \mapsto [T]$.
|
||||||
T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}.
|
}
|
||||||
\]
|
\begin{definition}
|
||||||
\end{definition}
|
If $T$ is a tree on $\N \times \N$
|
||||||
\item \leavevmode
|
and $x \in \cN$,
|
||||||
\begin{proposition}
|
then the \vocab{section at $x$}
|
||||||
\label{prop:lec12:2}
|
denoted $T(x)$,
|
||||||
Let $A \subseteq \cN$.
|
is the following tree on $\N$ :
|
||||||
The following are equivalent:
|
\[
|
||||||
\begin{itemize}
|
T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}.
|
||||||
\item $A$ is analytic.
|
\]
|
||||||
\item There is a pruned tree on $\N \times \N$
|
\end{definition}
|
||||||
such that
|
\begin{proposition}
|
||||||
\[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\]
|
\label{prop:lec12:2}
|
||||||
\end{itemize}
|
Let $A \subseteq \cN$.
|
||||||
\end{proposition}
|
The following are equivalent:
|
||||||
\begin{proof}
|
\begin{itemize}
|
||||||
$A$ is analytic iff
|
\item $A$ is analytic.
|
||||||
there exists $F \overset{\text{closed}}{\subseteq} \N \times \N$
|
\item There is a pruned tree on $\N \times \N$
|
||||||
such that $A = \proj_1(F)$.
|
such that
|
||||||
But closed sets of $\N \times \N$ correspond to pruned trees,
|
\[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\]
|
||||||
by the first point.
|
\end{itemize}
|
||||||
\end{proof}
|
\end{proposition}
|
||||||
\end{enumerate}
|
\begin{proof}
|
||||||
|
\gist{%
|
||||||
|
$A$ is analytic iff
|
||||||
|
there exists $F \overset{\text{closed}}{\subseteq} (\N \times \N)^{\N}$
|
||||||
|
such that $A = \proj_1(F)$.
|
||||||
|
But closed sets of $\N^\N \times \N^{\N}$ correspond to pruned trees,
|
||||||
|
by the first point.
|
||||||
|
}{Closed subsets of $\N^\N \times \N^\N$ correspond to pruned trees.}
|
||||||
|
\end{proof}
|
||||||
\begin{refproof}{thm:lec12:1}
|
\begin{refproof}{thm:lec12:1}
|
||||||
Take a tree $T$ on $\N \times \N$
|
\gist{%
|
||||||
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$.
|
Take a tree $T$ on $\N \times \N$
|
||||||
|
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$.
|
||||||
|
}{Write $A = \proj_1([T])$ for a pruned tree $T$ on $\N \times \N$.}
|
||||||
Consider
|
Consider
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
f\colon \cN &\longrightarrow & \Tr \\
|
f\colon \cN &\longrightarrow & \Tr \\
|
||||||
x &\longmapsto & T(x).
|
x &\longmapsto & T(x).
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Clearly $x \in A \iff f(x)$ is ill-founded.
|
\gist{%
|
||||||
$f$ is continuous:
|
Clearly $x \in A \iff f(x) \in \IF$.
|
||||||
Let $x\defon{n} = y\defon{n}$ for some $n \in \N$.
|
$f$ is continuous:
|
||||||
Then for all $m \le n, s,t \in \N^{<\N}$
|
Let $x\defon{n} = y\defon{n}$ for some $n \in \N$.
|
||||||
such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$,
|
Then for all $m \le n, s,t \in \N^{<\N}$
|
||||||
we have
|
such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$,
|
||||||
\begin{itemize}
|
we have
|
||||||
\item $t \in T(x) \iff (s,t) \in T$,
|
\begin{itemize}
|
||||||
\item $t \in T(y) \iff (s,t) \in T$.
|
\item $t \in T(x) \iff (s,t) \in T$,
|
||||||
\end{itemize}
|
\item $t \in T(y) \iff (s,t) \in T$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
So if $x\defon{n} = y\defon{n}$,
|
So if $x\defon{n} = y\defon{n}$,
|
||||||
then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$..
|
then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$.
|
||||||
|
}{}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
\begin{corollary}
|
\begin{corollary}
|
||||||
|
@ -125,7 +159,9 @@ For the proof we need some prerequisites:
|
||||||
\end{corollary}
|
\end{corollary}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $X$ be Polish.
|
Let $X$ be Polish.
|
||||||
Suppose that $A \subseteq X$ is analytic and uncountable.
|
Suppose that $A \subseteq X$ is analytic and uncountable%
|
||||||
|
\gist{}{ (trivial for countable)}.
|
||||||
|
|
||||||
Then
|
Then
|
||||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==
|
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==
|
||||||
\[\begin{tikzcd}
|
\[\begin{tikzcd}
|
||||||
|
@ -138,16 +174,18 @@ For the proof we need some prerequisites:
|
||||||
\end{tikzcd}\]
|
\end{tikzcd}\]
|
||||||
where $f$ is chosen as in \yaref{thm:lec12:1}.
|
where $f$ is chosen as in \yaref{thm:lec12:1}.
|
||||||
|
|
||||||
If $X$ is Polish and countable and $A \subseteq X$ analytic,
|
\gist{%
|
||||||
just consider
|
If $X$ is Polish and countable and $A \subseteq X$ analytic,
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
just consider
|
||||||
g \colon X &\longrightarrow & \Tr \\
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
x &\longmapsto & \begin{cases}
|
g \colon X &\longrightarrow & \Tr \\
|
||||||
a &: x \in A,\\
|
x &\longmapsto & \begin{cases}
|
||||||
b &: x \not\in A,\\
|
a &: x \in A,\\
|
||||||
\end{cases}
|
b &: x \not\in A,\\
|
||||||
\end{IEEEeqnarray*}
|
\end{cases}
|
||||||
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily.
|
\end{IEEEeqnarray*}
|
||||||
|
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily.
|
||||||
|
}{}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{Linear Orders}
|
\subsection{Linear Orders}
|
||||||
|
@ -161,18 +199,19 @@ Let
|
||||||
\[
|
\[
|
||||||
\WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}.
|
\WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}.
|
||||||
\]
|
\]
|
||||||
|
\gist{%
|
||||||
|
Recall that
|
||||||
|
\begin{itemize}
|
||||||
|
\item $(A,<)$ is a well ordering iff there are no infinite descending chains.
|
||||||
|
\item Every well ordering is isomorphic to an ordinal.
|
||||||
|
\item Any two well orderings are comparable,
|
||||||
|
i.e.~they are isomorphic,
|
||||||
|
or one is isomorphic to an initial segment of the other.
|
||||||
|
|
||||||
Recall that
|
Let $(A, <_A) \prec (B, <_B)$ denote that
|
||||||
\begin{itemize}
|
$(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
|
||||||
\item $(A,<)$ is a well ordering iff there are no infinite descending chains.
|
\end{itemize}
|
||||||
\item Every well ordering is isomorphic to an ordinal.
|
}{}
|
||||||
\item Any two well orderings are comparable,
|
|
||||||
i.e.~they are isomorphic,
|
|
||||||
or one is isomorphic to an initial segment of the other.
|
|
||||||
|
|
||||||
Let $(A, <_A) \prec (B, <_B)$ denote that
|
|
||||||
$(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A \vocab{rank} on some set $C$
|
A \vocab{rank} on some set $C$
|
||||||
|
@ -181,13 +220,14 @@ Recall that
|
||||||
\phi\colon C \to \Ord.
|
\phi\colon C \to \Ord.
|
||||||
\]
|
\]
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{example}
|
\gist{%
|
||||||
Let $C = \WO$
|
\begin{example}
|
||||||
and
|
Let $C = \WO$
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
and
|
||||||
\phi\colon \WO &\longrightarrow & \Ord \\
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\end{IEEEeqnarray*}
|
\phi\colon \WO &\longrightarrow & \Ord \\
|
||||||
where $\phi((A,<_A))$ is the unique ordinal
|
\end{IEEEeqnarray*}
|
||||||
isomorphic to $(A, <_A)$.
|
where $\phi((A,<_A))$ is the unique ordinal
|
||||||
\end{example}
|
isomorphic to $(A, <_A)$.
|
||||||
|
\end{example}
|
||||||
|
}{}
|
||||||
|
|
Loading…
Reference in a new issue