gist 12
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m52s

This commit is contained in:
Josia Pietsch 2024-01-24 15:35:14 +01:00
parent 3917993d93
commit acb56df1c2
Signed by: josia
GPG key ID: E70B571D66986A2D
3 changed files with 148 additions and 107 deletions

View file

@ -135,6 +135,7 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
\begin{theorem} \begin{theorem}
\label{thm:universals11}
Let $X,Y$ be uncountable Polish spaces. Let $X,Y$ be uncountable Polish spaces.
There exists a $Y$-universal $\Sigma^1_1(X)$ set. There exists a $Y$-universal $\Sigma^1_1(X)$ set.
\end{theorem} \end{theorem}

View file

@ -153,13 +153,14 @@ We will not proof this in this lecture.
\subsection{Ill-Founded Trees} \subsection{Ill-Founded Trees}
\gist{%
Recall that a \vocab{tree} on $\N$ is a subset of Recall that a \vocab{tree} on $\N$ is a subset of
$\N^{<\N}$ $\N^{<\N}$
closed under taking initial segments. closed under taking initial segments.
We now identify trees with their characteristic functions, We now identify trees with their characteristic functions,
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$ i.e.~we want to associate a tree $T \subseteq \N^{<\N}$}%
{We identify trees $T \subseteq \N^{<\N}$ with their characteristic functions:}
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\ \One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\
x &\longmapsto & \begin{cases} x &\longmapsto & \begin{cases}
@ -167,9 +168,9 @@ i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
0 &: x \not\in T. 0 &: x \not\in T.
\end{cases} \end{cases}
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Note that $\One_T \in {\{0,1\}^\N}^{< \N}$. \gist{Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.}{}
Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$. Let \vocab{$\Tr$} $ \coloneqq \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
\begin{observe} \begin{observe}
\[ \[
@ -177,6 +178,7 @@ Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\
\] \]
is closed (where we take the topology of the Cantor space). is closed (where we take the topology of the Cantor space).
\end{observe} \end{observe}
\gist{%
Indeed, for any $ s \in \N^{<\N}$ Indeed, for any $ s \in \N^{<\N}$
we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$ we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$
and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen. and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen.
@ -185,6 +187,4 @@ In particular for $s$ fixed,
we have that we have that
\[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\] \[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\]
is clopen in ${2^{\N}}^{<\N}$. is clopen in ${2^{\N}}^{<\N}$.
}{}

View file

@ -21,102 +21,136 @@
T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1. T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Consider $D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}$. Consider
Note that this set is closed in $\Tr \times \cN$, \[D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}.\]
since it is a countable intersection of clopen sets. \gist{%
% TODO Why clopen? Note that this set is closed in $\Tr \times \cN$,
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$. since it is a countable intersection of clopen sets.
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$.
}{$D \overset{\text{closed}}{\subseteq} \Tr \times \cN$ and $\IF = \proj_{\Tr}(D)$.}
\end{proof} \end{proof}
\begin{definition} \begin{definition}
An analytic set $B$ in some Polish space $Y$ An analytic set $B$ in some Polish space $Y$
is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete}) is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete})
\gist{%
iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$, iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$,
there exists a Borel function $f\colon X\to Y$ there exists a Borel function $f\colon X\to Y$
such that $x \in A \iff f(x) \in B$. such that $x \in A \iff f(x) \in B$,
i.e.~$f^{-1}(B) = A$.
}{%
iff for any $A \in \Sigma^1_1(X)$, $X$ Polish
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.}
Similarly, define \vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete}). \gist{%
Similarly, a conalytic set $B$ is called
\vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete})
iff for any $A \subseteq \Pi^1_1(X)$
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.
}{Similarly we define \vocab{complete coanalytic} / \vocab{$\Pi_1^1$-complete}.}
\end{definition} \end{definition}
\begin{observe} \begin{observe}
\leavevmode \leavevmode
\begin{itemize} \begin{itemize}
\item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete. \item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete.
\item $\Sigma^1_1$-complete sets are never Borel: \item $\Sigma^1_1$-complete sets are never Borel%
Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$. \gist{:
Take $A \in \Sigma^1_1(X) \setminus \cB(X)$ Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$.
and $f\colon X \to Y$ Borel. Take $A \in \Sigma^1_1(X) \setminus \cB(X)$%
But then $f^{-1}(B)$ is Borel. \footnote{e.g.~\yaref{thm:universals11}}
and $f\colon X \to Y$ Borel.
But then we get that $f^{-1}(B)$ is Borel $\lightnig$.
}{.}
\end{itemize} \end{itemize}
\end{observe} \end{observe}
% TODO ANKI-MARKER
\begin{theorem} \begin{theorem}
\label{thm:lec12:1} \label{thm:lec12:1}
Suppose that $A \subseteq \cN$ is analytic. Suppose that $A \subseteq \cN$ is analytic.
Then there is $f\colon \cN \to \Tr$\todo{Borel?} \gist{%
such that $x \in A \iff f(x)$ is ill-founded. Then there is a continuous function $f\colon \cN \to \Tr$
such that $x \in A \iff f(x)$ is ill-founded,
i.e.~$A = f^{-1}(\IF)$.
}{%
Then there exists $f\colon \cN \to \Tr$ continuous
such that $A = f^{-1}(\IF)$.
}
\end{theorem} \end{theorem}
For the proof we need some prerequisites: For the proof we need some prerequisites:
\begin{enumerate}[1.]
\item Recall that for $S$ countable, \gist{%
the pruned\footnote{no maximal elements, in particular this implies ill-founded if the tree is non empty.} trees Recall that for $S$ countable,
$T \subseteq S^{<\N}$ on $S$ correspond the pruned%
to closed subsets of $S^{\N}$: \footnote{no maximal elements,
\begin{IEEEeqnarray*}{rCl} in particular this implies ill-founded if the tree is non empty.
T &\longmapsto & [T]\\ } trees $T \subseteq S^{<\N}$ on $S$ correspond
\{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\ to closed subsets of $S^{\N}$:%
\end{IEEEeqnarray*} \footnote{cf.~\yaref{s3e1} (c)}
\todo{Copy from exercises} \begin{IEEEeqnarray*}{rCl}
\item \leavevmode\begin{definition} T &\longmapsto & [T]\\
If $T$ is a tree on $\N \times \N$ \{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\
and $x \in \cN$, \end{IEEEeqnarray*}
then the \vocab{section at $x$} }{%
%denoted $T(x)$, For $S$ countable,
is the following tree on $\N$ : pruned trees on $S$ correspond to closed subsets of $S^{\N}$
\[ via $T \mapsto [T]$.
T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}. }
\] \begin{definition}
\end{definition} If $T$ is a tree on $\N \times \N$
\item \leavevmode and $x \in \cN$,
\begin{proposition} then the \vocab{section at $x$}
\label{prop:lec12:2} denoted $T(x)$,
Let $A \subseteq \cN$. is the following tree on $\N$ :
The following are equivalent: \[
\begin{itemize} T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}.
\item $A$ is analytic. \]
\item There is a pruned tree on $\N \times \N$ \end{definition}
such that \begin{proposition}
\[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\] \label{prop:lec12:2}
\end{itemize} Let $A \subseteq \cN$.
\end{proposition} The following are equivalent:
\begin{proof} \begin{itemize}
$A$ is analytic iff \item $A$ is analytic.
there exists $F \overset{\text{closed}}{\subseteq} \N \times \N$ \item There is a pruned tree on $\N \times \N$
such that $A = \proj_1(F)$. such that
But closed sets of $\N \times \N$ correspond to pruned trees, \[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\]
by the first point. \end{itemize}
\end{proof} \end{proposition}
\end{enumerate} \begin{proof}
\gist{%
$A$ is analytic iff
there exists $F \overset{\text{closed}}{\subseteq} (\N \times \N)^{\N}$
such that $A = \proj_1(F)$.
But closed sets of $\N^\N \times \N^{\N}$ correspond to pruned trees,
by the first point.
}{Closed subsets of $\N^\N \times \N^\N$ correspond to pruned trees.}
\end{proof}
\begin{refproof}{thm:lec12:1} \begin{refproof}{thm:lec12:1}
Take a tree $T$ on $\N \times \N$ \gist{%
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$. Take a tree $T$ on $\N \times \N$
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$.
}{Write $A = \proj_1([T])$ for a pruned tree $T$ on $\N \times \N$.}
Consider Consider
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
f\colon \cN &\longrightarrow & \Tr \\ f\colon \cN &\longrightarrow & \Tr \\
x &\longmapsto & T(x). x &\longmapsto & T(x).
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Clearly $x \in A \iff f(x)$ is ill-founded. \gist{%
$f$ is continuous: Clearly $x \in A \iff f(x) \in \IF$.
Let $x\defon{n} = y\defon{n}$ for some $n \in \N$. $f$ is continuous:
Then for all $m \le n, s,t \in \N^{<\N}$ Let $x\defon{n} = y\defon{n}$ for some $n \in \N$.
such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$, Then for all $m \le n, s,t \in \N^{<\N}$
we have such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$,
\begin{itemize} we have
\item $t \in T(x) \iff (s,t) \in T$, \begin{itemize}
\item $t \in T(y) \iff (s,t) \in T$. \item $t \in T(x) \iff (s,t) \in T$,
\end{itemize} \item $t \in T(y) \iff (s,t) \in T$.
\end{itemize}
So if $x\defon{n} = y\defon{n}$, So if $x\defon{n} = y\defon{n}$,
then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$.. then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$.
}{}
\end{refproof} \end{refproof}
\begin{corollary} \begin{corollary}
@ -125,7 +159,9 @@ For the proof we need some prerequisites:
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
Let $X$ be Polish. Let $X$ be Polish.
Suppose that $A \subseteq X$ is analytic and uncountable. Suppose that $A \subseteq X$ is analytic and uncountable%
\gist{}{ (trivial for countable)}.
Then Then
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ== % https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==
\[\begin{tikzcd} \[\begin{tikzcd}
@ -138,16 +174,18 @@ For the proof we need some prerequisites:
\end{tikzcd}\] \end{tikzcd}\]
where $f$ is chosen as in \yaref{thm:lec12:1}. where $f$ is chosen as in \yaref{thm:lec12:1}.
If $X$ is Polish and countable and $A \subseteq X$ analytic, \gist{%
just consider If $X$ is Polish and countable and $A \subseteq X$ analytic,
\begin{IEEEeqnarray*}{rCl} just consider
g \colon X &\longrightarrow & \Tr \\ \begin{IEEEeqnarray*}{rCl}
x &\longmapsto & \begin{cases} g \colon X &\longrightarrow & \Tr \\
a &: x \in A,\\ x &\longmapsto & \begin{cases}
b &: x \not\in A,\\ a &: x \in A,\\
\end{cases} b &: x \not\in A,\\
\end{IEEEeqnarray*} \end{cases}
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily. \end{IEEEeqnarray*}
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily.
}{}
\end{proof} \end{proof}
\subsection{Linear Orders} \subsection{Linear Orders}
@ -161,18 +199,19 @@ Let
\[ \[
\WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}. \WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}.
\] \]
\gist{%
Recall that
\begin{itemize}
\item $(A,<)$ is a well ordering iff there are no infinite descending chains.
\item Every well ordering is isomorphic to an ordinal.
\item Any two well orderings are comparable,
i.e.~they are isomorphic,
or one is isomorphic to an initial segment of the other.
Recall that Let $(A, <_A) \prec (B, <_B)$ denote that
\begin{itemize} $(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
\item $(A,<)$ is a well ordering iff there are no infinite descending chains. \end{itemize}
\item Every well ordering is isomorphic to an ordinal. }{}
\item Any two well orderings are comparable,
i.e.~they are isomorphic,
or one is isomorphic to an initial segment of the other.
Let $(A, <_A) \prec (B, <_B)$ denote that
$(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
\end{itemize}
\begin{definition} \begin{definition}
A \vocab{rank} on some set $C$ A \vocab{rank} on some set $C$
@ -181,13 +220,14 @@ Recall that
\phi\colon C \to \Ord. \phi\colon C \to \Ord.
\] \]
\end{definition} \end{definition}
\begin{example} \gist{%
Let $C = \WO$ \begin{example}
and Let $C = \WO$
\begin{IEEEeqnarray*}{rCl} and
\phi\colon \WO &\longrightarrow & \Ord \\ \begin{IEEEeqnarray*}{rCl}
\end{IEEEeqnarray*} \phi\colon \WO &\longrightarrow & \Ord \\
where $\phi((A,<_A))$ is the unique ordinal \end{IEEEeqnarray*}
isomorphic to $(A, <_A)$. where $\phi((A,<_A))$ is the unique ordinal
\end{example} isomorphic to $(A, <_A)$.
\end{example}
}{}