This commit is contained in:
parent
0cceab0af9
commit
3917993d93
1 changed files with 4 additions and 5 deletions
|
@ -66,7 +66,7 @@
|
|||
}
|
||||
in $(y, <_\Q)$ is
|
||||
cofinal in $(y, <_{\Q})$ and vice versa.
|
||||
Equivalently, either $(x <^\ast_\phi y)$
|
||||
Equivalently, either $(x <^\ast_\phi y)$
|
||||
or
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
& &x,y \in \WO\\
|
||||
|
@ -84,10 +84,9 @@
|
|||
such that
|
||||
\[
|
||||
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
|
||||
\]
|
||||
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.
|
||||
\todo{missing picture
|
||||
\url{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}}
|
||||
\]
|
||||
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
||||
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
|
||||
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
|
|
Loading…
Reference in a new issue