From 3917993d930e4cf8cb8cfb3df556833765cca732 Mon Sep 17 00:00:00 2001
From: Josia Pietsch <git@jrpie.de>
Date: Wed, 24 Jan 2024 00:13:59 +0100
Subject: [PATCH] some small changes

---
 inputs/lecture_14.tex | 9 ++++-----
 1 file changed, 4 insertions(+), 5 deletions(-)

diff --git a/inputs/lecture_14.tex b/inputs/lecture_14.tex
index 3976165..975e4a5 100644
--- a/inputs/lecture_14.tex
+++ b/inputs/lecture_14.tex
@@ -66,7 +66,7 @@
     }
     in $(y, <_\Q)$ is
     cofinal in $(y, <_{\Q})$ and vice versa.
-    Equivalently, either $(x <^\ast_\phi y)$ 
+    Equivalently, either $(x <^\ast_\phi y)$
     or
     \begin{IEEEeqnarray*}{rCl}
        & &x,y \in \WO\\
@@ -84,10 +84,9 @@
     such that
     \[
     \forall  x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
-    \] 
-    We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.
-    \todo{missing picture
-        \url{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}}
+    \]
+    We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
+    \footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
 
 \end{theorem}
 \begin{proof}