From 3917993d930e4cf8cb8cfb3df556833765cca732 Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Wed, 24 Jan 2024 00:13:59 +0100 Subject: [PATCH] some small changes --- inputs/lecture_14.tex | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/inputs/lecture_14.tex b/inputs/lecture_14.tex index 3976165..975e4a5 100644 --- a/inputs/lecture_14.tex +++ b/inputs/lecture_14.tex @@ -66,7 +66,7 @@ } in $(y, <_\Q)$ is cofinal in $(y, <_{\Q})$ and vice versa. - Equivalently, either $(x <^\ast_\phi y)$ + Equivalently, either $(x <^\ast_\phi y)$ or \begin{IEEEeqnarray*}{rCl} & &x,y \in \WO\\ @@ -84,10 +84,9 @@ such that \[ \forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast). - \] - We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$. - \todo{missing picture - \url{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}} + \] + We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.% + \footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}} \end{theorem} \begin{proof}