This commit is contained in:
parent
3917993d93
commit
acb56df1c2
3 changed files with 148 additions and 107 deletions
|
@ -135,6 +135,7 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
|
|||
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:universals11}
|
||||
Let $X,Y$ be uncountable Polish spaces.
|
||||
There exists a $Y$-universal $\Sigma^1_1(X)$ set.
|
||||
\end{theorem}
|
||||
|
|
|
@ -153,13 +153,14 @@ We will not proof this in this lecture.
|
|||
|
||||
\subsection{Ill-Founded Trees}
|
||||
|
||||
|
||||
\gist{%
|
||||
Recall that a \vocab{tree} on $\N$ is a subset of
|
||||
$\N^{<\N}$
|
||||
closed under taking initial segments.
|
||||
|
||||
We now identify trees with their characteristic functions,
|
||||
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
|
||||
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$}%
|
||||
{We identify trees $T \subseteq \N^{<\N}$ with their characteristic functions:}
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\
|
||||
x &\longmapsto & \begin{cases}
|
||||
|
@ -167,9 +168,9 @@ i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
|
|||
0 &: x \not\in T.
|
||||
\end{cases}
|
||||
\end{IEEEeqnarray*}
|
||||
Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.
|
||||
\gist{Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.}{}
|
||||
|
||||
Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
||||
Let \vocab{$\Tr$} $ \coloneqq \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
||||
|
||||
\begin{observe}
|
||||
\[
|
||||
|
@ -177,6 +178,7 @@ Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\
|
|||
\]
|
||||
is closed (where we take the topology of the Cantor space).
|
||||
\end{observe}
|
||||
\gist{%
|
||||
Indeed, for any $ s \in \N^{<\N}$
|
||||
we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$
|
||||
and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen.
|
||||
|
@ -185,6 +187,4 @@ In particular for $s$ fixed,
|
|||
we have that
|
||||
\[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\]
|
||||
is clopen in ${2^{\N}}^{<\N}$.
|
||||
|
||||
|
||||
|
||||
}{}
|
||||
|
|
|
@ -21,102 +21,136 @@
|
|||
T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Consider $D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}$.
|
||||
Note that this set is closed in $\Tr \times \cN$,
|
||||
since it is a countable intersection of clopen sets.
|
||||
% TODO Why clopen?
|
||||
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$.
|
||||
Consider
|
||||
\[D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}.\]
|
||||
\gist{%
|
||||
Note that this set is closed in $\Tr \times \cN$,
|
||||
since it is a countable intersection of clopen sets.
|
||||
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$.
|
||||
}{$D \overset{\text{closed}}{\subseteq} \Tr \times \cN$ and $\IF = \proj_{\Tr}(D)$.}
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
An analytic set $B$ in some Polish space $Y$
|
||||
is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete})
|
||||
\gist{%
|
||||
iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$,
|
||||
there exists a Borel function $f\colon X\to Y$
|
||||
such that $x \in A \iff f(x) \in B$.
|
||||
such that $x \in A \iff f(x) \in B$,
|
||||
i.e.~$f^{-1}(B) = A$.
|
||||
}{%
|
||||
iff for any $A \in \Sigma^1_1(X)$, $X$ Polish
|
||||
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.}
|
||||
|
||||
Similarly, define \vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete}).
|
||||
\gist{%
|
||||
Similarly, a conalytic set $B$ is called
|
||||
\vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete})
|
||||
iff for any $A \subseteq \Pi^1_1(X)$
|
||||
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.
|
||||
}{Similarly we define \vocab{complete coanalytic} / \vocab{$\Pi_1^1$-complete}.}
|
||||
\end{definition}
|
||||
\begin{observe}
|
||||
\leavevmode
|
||||
\begin{itemize}
|
||||
\item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete.
|
||||
\item $\Sigma^1_1$-complete sets are never Borel:
|
||||
Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$.
|
||||
Take $A \in \Sigma^1_1(X) \setminus \cB(X)$
|
||||
and $f\colon X \to Y$ Borel.
|
||||
But then $f^{-1}(B)$ is Borel.
|
||||
\item $\Sigma^1_1$-complete sets are never Borel%
|
||||
\gist{:
|
||||
Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$.
|
||||
Take $A \in \Sigma^1_1(X) \setminus \cB(X)$%
|
||||
\footnote{e.g.~\yaref{thm:universals11}}
|
||||
and $f\colon X \to Y$ Borel.
|
||||
But then we get that $f^{-1}(B)$ is Borel $\lightnig$.
|
||||
}{.}
|
||||
\end{itemize}
|
||||
\end{observe}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
\begin{theorem}
|
||||
\label{thm:lec12:1}
|
||||
Suppose that $A \subseteq \cN$ is analytic.
|
||||
Then there is $f\colon \cN \to \Tr$\todo{Borel?}
|
||||
such that $x \in A \iff f(x)$ is ill-founded.
|
||||
\gist{%
|
||||
Then there is a continuous function $f\colon \cN \to \Tr$
|
||||
such that $x \in A \iff f(x)$ is ill-founded,
|
||||
i.e.~$A = f^{-1}(\IF)$.
|
||||
}{%
|
||||
Then there exists $f\colon \cN \to \Tr$ continuous
|
||||
such that $A = f^{-1}(\IF)$.
|
||||
}
|
||||
\end{theorem}
|
||||
For the proof we need some prerequisites:
|
||||
\begin{enumerate}[1.]
|
||||
\item Recall that for $S$ countable,
|
||||
the pruned\footnote{no maximal elements, in particular this implies ill-founded if the tree is non empty.} trees
|
||||
$T \subseteq S^{<\N}$ on $S$ correspond
|
||||
to closed subsets of $S^{\N}$:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
T &\longmapsto & [T]\\
|
||||
\{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\
|
||||
\end{IEEEeqnarray*}
|
||||
\todo{Copy from exercises}
|
||||
\item \leavevmode\begin{definition}
|
||||
If $T$ is a tree on $\N \times \N$
|
||||
and $x \in \cN$,
|
||||
then the \vocab{section at $x$}
|
||||
%denoted $T(x)$,
|
||||
is the following tree on $\N$ :
|
||||
\[
|
||||
T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}.
|
||||
\]
|
||||
\end{definition}
|
||||
\item \leavevmode
|
||||
\begin{proposition}
|
||||
\label{prop:lec12:2}
|
||||
Let $A \subseteq \cN$.
|
||||
The following are equivalent:
|
||||
\begin{itemize}
|
||||
\item $A$ is analytic.
|
||||
\item There is a pruned tree on $\N \times \N$
|
||||
such that
|
||||
\[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\]
|
||||
\end{itemize}
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
$A$ is analytic iff
|
||||
there exists $F \overset{\text{closed}}{\subseteq} \N \times \N$
|
||||
such that $A = \proj_1(F)$.
|
||||
But closed sets of $\N \times \N$ correspond to pruned trees,
|
||||
by the first point.
|
||||
\end{proof}
|
||||
\end{enumerate}
|
||||
|
||||
\gist{%
|
||||
Recall that for $S$ countable,
|
||||
the pruned%
|
||||
\footnote{no maximal elements,
|
||||
in particular this implies ill-founded if the tree is non empty.
|
||||
} trees $T \subseteq S^{<\N}$ on $S$ correspond
|
||||
to closed subsets of $S^{\N}$:%
|
||||
\footnote{cf.~\yaref{s3e1} (c)}
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
T &\longmapsto & [T]\\
|
||||
\{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\
|
||||
\end{IEEEeqnarray*}
|
||||
}{%
|
||||
For $S$ countable,
|
||||
pruned trees on $S$ correspond to closed subsets of $S^{\N}$
|
||||
via $T \mapsto [T]$.
|
||||
}
|
||||
\begin{definition}
|
||||
If $T$ is a tree on $\N \times \N$
|
||||
and $x \in \cN$,
|
||||
then the \vocab{section at $x$}
|
||||
denoted $T(x)$,
|
||||
is the following tree on $\N$ :
|
||||
\[
|
||||
T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}.
|
||||
\]
|
||||
\end{definition}
|
||||
\begin{proposition}
|
||||
\label{prop:lec12:2}
|
||||
Let $A \subseteq \cN$.
|
||||
The following are equivalent:
|
||||
\begin{itemize}
|
||||
\item $A$ is analytic.
|
||||
\item There is a pruned tree on $\N \times \N$
|
||||
such that
|
||||
\[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\]
|
||||
\end{itemize}
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
$A$ is analytic iff
|
||||
there exists $F \overset{\text{closed}}{\subseteq} (\N \times \N)^{\N}$
|
||||
such that $A = \proj_1(F)$.
|
||||
But closed sets of $\N^\N \times \N^{\N}$ correspond to pruned trees,
|
||||
by the first point.
|
||||
}{Closed subsets of $\N^\N \times \N^\N$ correspond to pruned trees.}
|
||||
\end{proof}
|
||||
\begin{refproof}{thm:lec12:1}
|
||||
Take a tree $T$ on $\N \times \N$
|
||||
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$.
|
||||
\gist{%
|
||||
Take a tree $T$ on $\N \times \N$
|
||||
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$.
|
||||
}{Write $A = \proj_1([T])$ for a pruned tree $T$ on $\N \times \N$.}
|
||||
Consider
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f\colon \cN &\longrightarrow & \Tr \\
|
||||
x &\longmapsto & T(x).
|
||||
\end{IEEEeqnarray*}
|
||||
Clearly $x \in A \iff f(x)$ is ill-founded.
|
||||
$f$ is continuous:
|
||||
Let $x\defon{n} = y\defon{n}$ for some $n \in \N$.
|
||||
Then for all $m \le n, s,t \in \N^{<\N}$
|
||||
such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$,
|
||||
we have
|
||||
\begin{itemize}
|
||||
\item $t \in T(x) \iff (s,t) \in T$,
|
||||
\item $t \in T(y) \iff (s,t) \in T$.
|
||||
\end{itemize}
|
||||
\gist{%
|
||||
Clearly $x \in A \iff f(x) \in \IF$.
|
||||
$f$ is continuous:
|
||||
Let $x\defon{n} = y\defon{n}$ for some $n \in \N$.
|
||||
Then for all $m \le n, s,t \in \N^{<\N}$
|
||||
such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$,
|
||||
we have
|
||||
\begin{itemize}
|
||||
\item $t \in T(x) \iff (s,t) \in T$,
|
||||
\item $t \in T(y) \iff (s,t) \in T$.
|
||||
\end{itemize}
|
||||
|
||||
So if $x\defon{n} = y\defon{n}$,
|
||||
then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$..
|
||||
So if $x\defon{n} = y\defon{n}$,
|
||||
then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$.
|
||||
}{}
|
||||
\end{refproof}
|
||||
|
||||
\begin{corollary}
|
||||
|
@ -125,7 +159,9 @@ For the proof we need some prerequisites:
|
|||
\end{corollary}
|
||||
\begin{proof}
|
||||
Let $X$ be Polish.
|
||||
Suppose that $A \subseteq X$ is analytic and uncountable.
|
||||
Suppose that $A \subseteq X$ is analytic and uncountable%
|
||||
\gist{}{ (trivial for countable)}.
|
||||
|
||||
Then
|
||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==
|
||||
\[\begin{tikzcd}
|
||||
|
@ -138,16 +174,18 @@ For the proof we need some prerequisites:
|
|||
\end{tikzcd}\]
|
||||
where $f$ is chosen as in \yaref{thm:lec12:1}.
|
||||
|
||||
If $X$ is Polish and countable and $A \subseteq X$ analytic,
|
||||
just consider
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
g \colon X &\longrightarrow & \Tr \\
|
||||
x &\longmapsto & \begin{cases}
|
||||
a &: x \in A,\\
|
||||
b &: x \not\in A,\\
|
||||
\end{cases}
|
||||
\end{IEEEeqnarray*}
|
||||
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily.
|
||||
\gist{%
|
||||
If $X$ is Polish and countable and $A \subseteq X$ analytic,
|
||||
just consider
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
g \colon X &\longrightarrow & \Tr \\
|
||||
x &\longmapsto & \begin{cases}
|
||||
a &: x \in A,\\
|
||||
b &: x \not\in A,\\
|
||||
\end{cases}
|
||||
\end{IEEEeqnarray*}
|
||||
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily.
|
||||
}{}
|
||||
\end{proof}
|
||||
|
||||
\subsection{Linear Orders}
|
||||
|
@ -161,18 +199,19 @@ Let
|
|||
\[
|
||||
\WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}.
|
||||
\]
|
||||
\gist{%
|
||||
Recall that
|
||||
\begin{itemize}
|
||||
\item $(A,<)$ is a well ordering iff there are no infinite descending chains.
|
||||
\item Every well ordering is isomorphic to an ordinal.
|
||||
\item Any two well orderings are comparable,
|
||||
i.e.~they are isomorphic,
|
||||
or one is isomorphic to an initial segment of the other.
|
||||
|
||||
Recall that
|
||||
\begin{itemize}
|
||||
\item $(A,<)$ is a well ordering iff there are no infinite descending chains.
|
||||
\item Every well ordering is isomorphic to an ordinal.
|
||||
\item Any two well orderings are comparable,
|
||||
i.e.~they are isomorphic,
|
||||
or one is isomorphic to an initial segment of the other.
|
||||
|
||||
Let $(A, <_A) \prec (B, <_B)$ denote that
|
||||
$(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
|
||||
\end{itemize}
|
||||
Let $(A, <_A) \prec (B, <_B)$ denote that
|
||||
$(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
|
||||
\end{itemize}
|
||||
}{}
|
||||
|
||||
\begin{definition}
|
||||
A \vocab{rank} on some set $C$
|
||||
|
@ -181,13 +220,14 @@ Recall that
|
|||
\phi\colon C \to \Ord.
|
||||
\]
|
||||
\end{definition}
|
||||
\begin{example}
|
||||
Let $C = \WO$
|
||||
and
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\phi\colon \WO &\longrightarrow & \Ord \\
|
||||
\end{IEEEeqnarray*}
|
||||
where $\phi((A,<_A))$ is the unique ordinal
|
||||
isomorphic to $(A, <_A)$.
|
||||
\end{example}
|
||||
|
||||
\gist{%
|
||||
\begin{example}
|
||||
Let $C = \WO$
|
||||
and
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\phi\colon \WO &\longrightarrow & \Ord \\
|
||||
\end{IEEEeqnarray*}
|
||||
where $\phi((A,<_A))$ is the unique ordinal
|
||||
isomorphic to $(A, <_A)$.
|
||||
\end{example}
|
||||
}{}
|
||||
|
|
Loading…
Reference in a new issue