This commit is contained in:
parent
5b34fb34d1
commit
9d601c2e62
5 changed files with 58 additions and 8 deletions
|
@ -46,7 +46,7 @@ year = {2012},
|
||||||
}
|
}
|
||||||
@MISC{3722713,
|
@MISC{3722713,
|
||||||
TITLE = {Embedding of countable linear orders into $\Bbb Q$ as topological spaces},
|
TITLE = {Embedding of countable linear orders into $\Bbb Q$ as topological spaces},
|
||||||
AUTHOR = {Eric Wofsey (https://math.stackexchange.com/users/86856/eric-wofsey)},
|
AUTHOR = {Eric Wofsey},
|
||||||
HOWPUBLISHED = {Mathematics Stack Exchange},
|
HOWPUBLISHED = {Mathematics Stack Exchange},
|
||||||
NOTE = {URL:https://math.stackexchange.com/q/3722713 (version: 2020-06-16)},
|
NOTE = {URL:https://math.stackexchange.com/q/3722713 (version: 2020-06-16)},
|
||||||
EPRINT = {https://math.stackexchange.com/q/3722713},
|
EPRINT = {https://math.stackexchange.com/q/3722713},
|
||||||
|
|
|
@ -156,6 +156,7 @@ By Zorn's lemma, this will follow from
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\yaref{thm:furstenberg} allows us to talk about ranks of distal minimal flows:
|
\yaref{thm:furstenberg} allows us to talk about ranks of distal minimal flows:
|
||||||
\begin{definition}[{\cite[{}13.1]{Furstenberg}}]
|
\begin{definition}[{\cite[{}13.1]{Furstenberg}}]
|
||||||
|
\label{def:floworder}
|
||||||
Let $(X,T)$ be a quasi-isometric flow,
|
Let $(X,T)$ be a quasi-isometric flow,
|
||||||
and let $\eta$ be the smallest ordinal
|
and let $\eta$ be the smallest ordinal
|
||||||
such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$
|
such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$
|
||||||
|
|
|
@ -272,9 +272,6 @@ More generally we can show:
|
||||||
In particular,
|
In particular,
|
||||||
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
% TODO ANKI-MARKER
|
|
||||||
|
|
||||||
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
||||||
\label{ex:19:inftorus}
|
\label{ex:19:inftorus}
|
||||||
Let $X$ be the infinite torus
|
Let $X$ be the infinite torus
|
||||||
|
|
|
@ -19,6 +19,10 @@
|
||||||
Here I'll try to only use multiplicative notation.
|
Here I'll try to only use multiplicative notation.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
}{}
|
}{}
|
||||||
|
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
We will be studying projections to the first $d$ coordinates,
|
We will be studying projections to the first $d$ coordinates,
|
||||||
i.e.
|
i.e.
|
||||||
\[
|
\[
|
||||||
|
@ -34,9 +38,9 @@ For $d = 1$ we get the circle rotation $x \mapsto e^{\i \alpha} x$.
|
||||||
\[
|
\[
|
||||||
H_m \coloneqq \{x \in S^1 : x^m = 0\}
|
H_m \coloneqq \{x \in S^1 : x^m = 0\}
|
||||||
\]
|
\]
|
||||||
for some $m \in \Z$.
|
for some $m \in \Z$.%
|
||||||
|
\footnote{cf.~\yaref{s12e2}}
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\todo{Homework!}
|
|
||||||
We will show that $\tau_d$ is minimal for all $d$,
|
We will show that $\tau_d$ is minimal for all $d$,
|
||||||
i.e.~every orbit is dense.
|
i.e.~every orbit is dense.
|
||||||
From this it will follow that $\tau$ is minimal.
|
From this it will follow that $\tau$ is minimal.
|
||||||
|
@ -45,7 +49,6 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
|
||||||
coordinates.
|
coordinates.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:lec20:1}
|
\label{lem:lec20:1}
|
||||||
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
||||||
|
|
|
@ -4,9 +4,58 @@
|
||||||
\nr 1
|
\nr 1
|
||||||
% Examinable
|
% Examinable
|
||||||
|
|
||||||
% TODO (there is a more direct way to do it, not using analytic / coanalytic)
|
Let $\LO(\N) \overset{\text{closed}}{\subseteq} 2^{\N\times \N}$ denote the set of linear orders on $\N$.
|
||||||
|
|
||||||
|
Let $S \subseteq \LO(\N)$ be the set of orders having a least
|
||||||
|
element and such that every element has an immediate successor.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $S$ is Borel in $\LO(\N)$:
|
||||||
|
|
||||||
|
Let $M_n \subseteq \LO(\N)$ be the set of orders with minimal element $n$.
|
||||||
|
Let $I_{n,m} \subseteq \LO(\N)$ be the set of orders such
|
||||||
|
that $m$ is the immediate successor of $n$.
|
||||||
|
|
||||||
|
Clearly $S = \left(\bigcap_n \bigcup_{m\neq n} I_{n,m}\right) \cap \bigcup_n M_n$,
|
||||||
|
so it suffices to show that $M_n$ and $I_{n,m}$ are Borel.
|
||||||
|
It is $M_n = \bigcap_{m\neq n} \{\prec : m \not\prec n\}$
|
||||||
|
and $I_{n,m} = \{\prec: n \prec m\} \cap \bigcap_{i} \{\prec : n \preceq i \preceq m \implies n = i \lor n = m \}$.
|
||||||
|
\item Give an example of an element of $S$ which is not well-ordered:
|
||||||
|
|
||||||
|
Consider $\{1 - \frac{1}{n} : n \in \N^+\} \cup \{1 + \frac{1}{n} : n \in \N^{+}\} \subseteq \R$
|
||||||
|
with the order $<_\R$.
|
||||||
|
This is an element of $S$,
|
||||||
|
but $\{x \in S: x \ge 1\}$ has no minimal element,
|
||||||
|
hence it is not well-ordered.
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
\nr 2
|
\nr 2
|
||||||
% Examinable
|
% Examinable
|
||||||
|
Recall the definition of the circle shift flow $(\R / \Z, \Z)$
|
||||||
|
with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$.
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item If $\alpha \not\in \Q$, then $(\R / \Z, \Z)$ is minimal:
|
||||||
|
|
||||||
|
This is known as \href{https://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem}{Dirichlet's Approximation Theorem}.
|
||||||
|
|
||||||
|
\item Consider $\R/\Z$ as a topological group.
|
||||||
|
Any subgroup $H$ of $\R / \Z$ is dense in $\R / \Z$
|
||||||
|
or of the form $H = \{ x \in \R / \Z | mx = 0\}$
|
||||||
|
for some $m \in \Z$.
|
||||||
|
|
||||||
|
|
||||||
|
If $H$ contains an irrational element $\alpha$, then
|
||||||
|
it is dense by the previous point.
|
||||||
|
|
||||||
|
Suppose that $H \subseteq \Q / \Z$.
|
||||||
|
Let $D$ be the set of denominators of elements of $H$
|
||||||
|
written as irreducible fractions.
|
||||||
|
If $D$ is finite,
|
||||||
|
then $H = \{x \in \R / \Z : \mathop{lcm}(D)x = 0\}$.
|
||||||
|
Otherwise $H$ is dense, as it contains
|
||||||
|
elements of arbitrarily large denominator.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
\nr 3
|
\nr 3
|
||||||
|
|
Loading…
Reference in a new issue