diff --git a/bibliography/references.bib b/bibliography/references.bib index 21b76fd..f542bda 100644 --- a/bibliography/references.bib +++ b/bibliography/references.bib @@ -46,7 +46,7 @@ year = {2012}, } @MISC{3722713, TITLE = {Embedding of countable linear orders into $\Bbb Q$ as topological spaces}, - AUTHOR = {Eric Wofsey (https://math.stackexchange.com/users/86856/eric-wofsey)}, + AUTHOR = {Eric Wofsey}, HOWPUBLISHED = {Mathematics Stack Exchange}, NOTE = {URL:https://math.stackexchange.com/q/3722713 (version: 2020-06-16)}, EPRINT = {https://math.stackexchange.com/q/3722713}, diff --git a/inputs/lecture_16.tex b/inputs/lecture_16.tex index f5ee141..075f78c 100644 --- a/inputs/lecture_16.tex +++ b/inputs/lecture_16.tex @@ -156,6 +156,7 @@ By Zorn's lemma, this will follow from \end{theorem} \yaref{thm:furstenberg} allows us to talk about ranks of distal minimal flows: \begin{definition}[{\cite[{}13.1]{Furstenberg}}] + \label{def:floworder} Let $(X,T)$ be a quasi-isometric flow, and let $\eta$ be the smallest ordinal such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$ diff --git a/inputs/lecture_19.tex b/inputs/lecture_19.tex index 5dc267f..6ad74b0 100644 --- a/inputs/lecture_19.tex +++ b/inputs/lecture_19.tex @@ -272,9 +272,6 @@ More generally we can show: In particular, $(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$. \end{proof} - -% TODO ANKI-MARKER - \begin{example}[{\cite[p. 513]{Furstenberg}}] \label{ex:19:inftorus} Let $X$ be the infinite torus diff --git a/inputs/lecture_20.tex b/inputs/lecture_20.tex index 27259a1..2c6797b 100644 --- a/inputs/lecture_20.tex +++ b/inputs/lecture_20.tex @@ -19,6 +19,10 @@ Here I'll try to only use multiplicative notation. \end{remark} }{} + + +% TODO ANKI-MARKER + We will be studying projections to the first $d$ coordinates, i.e. \[ @@ -34,9 +38,9 @@ For $d = 1$ we get the circle rotation $x \mapsto e^{\i \alpha} x$. \[ H_m \coloneqq \{x \in S^1 : x^m = 0\} \] - for some $m \in \Z$. + for some $m \in \Z$.% + \footnote{cf.~\yaref{s12e2}} \end{fact} -\todo{Homework!} We will show that $\tau_d$ is minimal for all $d$, i.e.~every orbit is dense. From this it will follow that $\tau$ is minimal. @@ -45,7 +49,6 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$ coordinates. - \begin{lemma} \label{lem:lec20:1} Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$ diff --git a/inputs/tutorial_14.tex b/inputs/tutorial_14.tex index 77c2478..b2f93de 100644 --- a/inputs/tutorial_14.tex +++ b/inputs/tutorial_14.tex @@ -4,9 +4,58 @@ \nr 1 % Examinable -% TODO (there is a more direct way to do it, not using analytic / coanalytic) +Let $\LO(\N) \overset{\text{closed}}{\subseteq} 2^{\N\times \N}$ denote the set of linear orders on $\N$. + +Let $S \subseteq \LO(\N)$ be the set of orders having a least +element and such that every element has an immediate successor. +\begin{itemize} + \item $S$ is Borel in $\LO(\N)$: + + Let $M_n \subseteq \LO(\N)$ be the set of orders with minimal element $n$. + Let $I_{n,m} \subseteq \LO(\N)$ be the set of orders such + that $m$ is the immediate successor of $n$. + + Clearly $S = \left(\bigcap_n \bigcup_{m\neq n} I_{n,m}\right) \cap \bigcup_n M_n$, + so it suffices to show that $M_n$ and $I_{n,m}$ are Borel. + It is $M_n = \bigcap_{m\neq n} \{\prec : m \not\prec n\}$ + and $I_{n,m} = \{\prec: n \prec m\} \cap \bigcap_{i} \{\prec : n \preceq i \preceq m \implies n = i \lor n = m \}$. + \item Give an example of an element of $S$ which is not well-ordered: + + Consider $\{1 - \frac{1}{n} : n \in \N^+\} \cup \{1 + \frac{1}{n} : n \in \N^{+}\} \subseteq \R$ + with the order $<_\R$. + This is an element of $S$, + but $\{x \in S: x \ge 1\}$ has no minimal element, + hence it is not well-ordered. + +\end{itemize} + \nr 2 % Examinable +Recall the definition of the circle shift flow $(\R / \Z, \Z)$ +with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$. + +\begin{itemize} + \item If $\alpha \not\in \Q$, then $(\R / \Z, \Z)$ is minimal: + + This is known as \href{https://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem}{Dirichlet's Approximation Theorem}. + + \item Consider $\R/\Z$ as a topological group. + Any subgroup $H$ of $\R / \Z$ is dense in $\R / \Z$ + or of the form $H = \{ x \in \R / \Z | mx = 0\}$ + for some $m \in \Z$. + + + If $H$ contains an irrational element $\alpha$, then + it is dense by the previous point. + + Suppose that $H \subseteq \Q / \Z$. + Let $D$ be the set of denominators of elements of $H$ + written as irreducible fractions. + If $D$ is finite, + then $H = \{x \in \R / \Z : \mathop{lcm}(D)x = 0\}$. + Otherwise $H$ is dense, as it contains + elements of arbitrarily large denominator. +\end{itemize} \nr 3