This commit is contained in:
parent
82f44e36e8
commit
957c9d9712
2 changed files with 93 additions and 6 deletions
|
@ -1,4 +1,4 @@
|
|||
\lecture{20}{2024-01-09}{The infinite Torus}
|
||||
\lecture{20}{2024-01-09}{The Infinite Torus}
|
||||
|
||||
\begin{example}
|
||||
\footnote{This is the same as \yaref{ex:19:inftorus},
|
||||
|
@ -132,6 +132,7 @@ coordinates.
|
|||
\end{definition}
|
||||
|
||||
\begin{remark}
|
||||
\label{rem:l20:sigma}
|
||||
Note that for
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\sigma\colon (S^1)^d &\longrightarrow & S^1 \\
|
||||
|
@ -167,14 +168,15 @@ coordinates.
|
|||
\end{proof}
|
||||
|
||||
\begin{refproof}{thm:taudminimal:help}
|
||||
Let $s \coloneqq \tau_d$ and $Y \coloneqq (S^1)^d$.
|
||||
Let $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ and $Y \coloneqq (S^1)^d$.
|
||||
Consider
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\gamma\colon S^1 &\longrightarrow & Y \\
|
||||
x &\longmapsto & (x,x,\ldots,x)
|
||||
x &\longmapsto & (x,x,\ldots,x).
|
||||
\end{IEEEeqnarray*}
|
||||
Note that
|
||||
\begin{enumerate}[(a)]
|
||||
\item $\gamma$ and $s \circ \gamma$ are homotopic
|
||||
\item $\gamma$ and $S \circ \gamma$ are homotopic
|
||||
via
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\
|
||||
|
@ -185,9 +187,7 @@ coordinates.
|
|||
since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$.
|
||||
\end{enumerate}
|
||||
|
||||
[to be continued]
|
||||
\phantom\qedhere
|
||||
|
||||
\end{refproof}
|
||||
|
||||
|
||||
|
|
87
inputs/lecture_21.tex
Normal file
87
inputs/lecture_21.tex
Normal file
|
@ -0,0 +1,87 @@
|
|||
\lecture{21}{2024-01-12}{Iterated Skew Shift}
|
||||
|
||||
\begin{refproof}{thm:taudminimal:help}
|
||||
Suppose towards a contradiction that
|
||||
$Y \times S^1$ contains a proper minimal subflow $Z$.
|
||||
Consider the projection $\pi\colon Y \times S^1 \to Y$.
|
||||
By minimality of $Y$, we have $\pi(Z) = Y$.
|
||||
Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal,
|
||||
so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.
|
||||
|
||||
Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$.
|
||||
$H$ is a closed subgroup of $S^1$.
|
||||
% H is a rotation of Z containing 1 (?)
|
||||
Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$),
|
||||
or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$
|
||||
by \yaref{fact:tau1minimal}.
|
||||
|
||||
Note that if $(y, \beta) \in Z$ then for $t \in S^1$,
|
||||
we have
|
||||
\[
|
||||
(y, \beta \cdot t) \in Z \iff t^m = 1.
|
||||
\]
|
||||
Therefore for every $y \in Y$, there are exactly $m$ many
|
||||
$\xi \in S^1$
|
||||
such that $(y, \xi) \in Z$.
|
||||
|
||||
Specifically for all $y$ there exists $\beta^{(y)} \in S^1$
|
||||
such that $(y,\xi) \in Z$ iff
|
||||
\[
|
||||
\xi \in \{\beta^{(y)} \cdot t_1, \beta^{(y)} \cdot t_2, \ldots,\beta^{(y)} \cdot t_m\},
|
||||
\]
|
||||
where the $t_i \in S^1$
|
||||
are such that
|
||||
$t_i^m = 1$ for all $i$ and $i \neq j \implies t_i \neq t_j$,
|
||||
i.e.~the $t_i$ are the $m$\textsuperscript{th} roots of unity.
|
||||
|
||||
Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$.
|
||||
Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$
|
||||
we get a continuous\todo{Why is this continuous?}
|
||||
function $\phi\colon Y \to S^1$
|
||||
such that
|
||||
\[
|
||||
Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}.
|
||||
\]
|
||||
% namely
|
||||
% \begin{IEEEeqnarray*}{rCl}
|
||||
% \phi\colon Y &\longrightarrow & S^1 \\
|
||||
% y &\longmapsto & \beta^{(y)}.
|
||||
% \end{IEEEeqnarray*}
|
||||
|
||||
Note that $f(Z)$ is homeomorphic to $Y$.\todo{Why?}
|
||||
|
||||
\begin{claim}
|
||||
$\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
We have $T(y, \xi) = (S(y), \sigma(y) \cdot \xi)$
|
||||
(cf.~\yaref{rem:l20:sigma}).
|
||||
$Z$ is invariant under $T$.
|
||||
So for $(y, \xi) \in Z$ we get $T(y, \xi) = ({\color{red}S(y)}, {\color{blue}\sigma(y) \cdot \xi}) \in Z$.
|
||||
Thus
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\phi({\color{red}S(y)}) &=& ({\color{blue}\sigma(y) \cdot \xi})^m\\
|
||||
&=& (\sigma(y))^m \cdot \xi^m\\
|
||||
&=& (\sigma(y))^m \cdot \phi(y).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{subproof}
|
||||
Applying $\gamma$ we obtain
|
||||
\[
|
||||
[\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [x \mapsto (\sigma(\gamma(x))^n].
|
||||
\]
|
||||
$S\circ \gamma$ is homotopic to $\gamma$,
|
||||
so $[\phi \circ S \circ \gamma] = [\phi \circ \gamma]$.
|
||||
Thus $[x \mapsto (\sigma(\gamma(x))^n] = 0$,
|
||||
but that is a contradiction to (b) $\lightning$
|
||||
\end{refproof}
|
||||
|
||||
Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$.
|
||||
\begin{theorem}
|
||||
$(X_n, \tau_n)$ is the maximal isometric extension of $(X_{n-1}, \tau_{n-1})$
|
||||
in $(X,\tau)$.
|
||||
\end{theorem}
|
||||
\begin{corollary}
|
||||
The order of $(X,\tau)$ is $\omega$.
|
||||
\end{corollary}
|
||||
\todo{I could not attend lecture 21 as I was sick. The official notes on the lecture are very short.
|
||||
Is something missing in the official notes?}
|
Loading…
Reference in a new issue