From 957c9d97120f6ecb8dc0b2d4ac0966e43c23fb7e Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Mon, 15 Jan 2024 23:27:08 +0100 Subject: [PATCH] lecture 21 --- inputs/lecture_20.tex | 12 +++--- inputs/lecture_21.tex | 87 +++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 93 insertions(+), 6 deletions(-) create mode 100644 inputs/lecture_21.tex diff --git a/inputs/lecture_20.tex b/inputs/lecture_20.tex index f151903..1e88b7e 100644 --- a/inputs/lecture_20.tex +++ b/inputs/lecture_20.tex @@ -1,4 +1,4 @@ -\lecture{20}{2024-01-09}{The infinite Torus} +\lecture{20}{2024-01-09}{The Infinite Torus} \begin{example} \footnote{This is the same as \yaref{ex:19:inftorus}, @@ -132,6 +132,7 @@ coordinates. \end{definition} \begin{remark} + \label{rem:l20:sigma} Note that for \begin{IEEEeqnarray*}{rCl} \sigma\colon (S^1)^d &\longrightarrow & S^1 \\ @@ -167,14 +168,15 @@ coordinates. \end{proof} \begin{refproof}{thm:taudminimal:help} - Let $s \coloneqq \tau_d$ and $Y \coloneqq (S^1)^d$. + Let $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ and $Y \coloneqq (S^1)^d$. Consider \begin{IEEEeqnarray*}{rCl} \gamma\colon S^1 &\longrightarrow & Y \\ - x &\longmapsto & (x,x,\ldots,x) + x &\longmapsto & (x,x,\ldots,x). \end{IEEEeqnarray*} + Note that \begin{enumerate}[(a)] - \item $\gamma$ and $s \circ \gamma$ are homotopic + \item $\gamma$ and $S \circ \gamma$ are homotopic via \begin{IEEEeqnarray*}{rCl} H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\ @@ -185,9 +187,7 @@ coordinates. since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$. \end{enumerate} - [to be continued] \phantom\qedhere - \end{refproof} diff --git a/inputs/lecture_21.tex b/inputs/lecture_21.tex new file mode 100644 index 0000000..8c8a9c9 --- /dev/null +++ b/inputs/lecture_21.tex @@ -0,0 +1,87 @@ +\lecture{21}{2024-01-12}{Iterated Skew Shift} + +\begin{refproof}{thm:taudminimal:help} + Suppose towards a contradiction that + $Y \times S^1$ contains a proper minimal subflow $Z$. + Consider the projection $\pi\colon Y \times S^1 \to Y$. + By minimality of $Y$, we have $\pi(Z) = Y$. + Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal, + so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$. + + Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$. + $H$ is a closed subgroup of $S^1$. + % H is a rotation of Z containing 1 (?) + Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$), + or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$ + by \yaref{fact:tau1minimal}. + + Note that if $(y, \beta) \in Z$ then for $t \in S^1$, + we have + \[ + (y, \beta \cdot t) \in Z \iff t^m = 1. + \] + Therefore for every $y \in Y$, there are exactly $m$ many + $\xi \in S^1$ + such that $(y, \xi) \in Z$. + + Specifically for all $y$ there exists $\beta^{(y)} \in S^1$ + such that $(y,\xi) \in Z$ iff + \[ + \xi \in \{\beta^{(y)} \cdot t_1, \beta^{(y)} \cdot t_2, \ldots,\beta^{(y)} \cdot t_m\}, + \] + where the $t_i \in S^1$ + are such that + $t_i^m = 1$ for all $i$ and $i \neq j \implies t_i \neq t_j$, + i.e.~the $t_i$ are the $m$\textsuperscript{th} roots of unity. + + Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$. + Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$ + we get a continuous\todo{Why is this continuous?} + function $\phi\colon Y \to S^1$ + such that + \[ + Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}. + \] + % namely + % \begin{IEEEeqnarray*}{rCl} + % \phi\colon Y &\longrightarrow & S^1 \\ + % y &\longmapsto & \beta^{(y)}. + % \end{IEEEeqnarray*} + + Note that $f(Z)$ is homeomorphic to $Y$.\todo{Why?} + + \begin{claim} + $\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$. + \end{claim} + \begin{subproof} + We have $T(y, \xi) = (S(y), \sigma(y) \cdot \xi)$ + (cf.~\yaref{rem:l20:sigma}). + $Z$ is invariant under $T$. + So for $(y, \xi) \in Z$ we get $T(y, \xi) = ({\color{red}S(y)}, {\color{blue}\sigma(y) \cdot \xi}) \in Z$. + Thus + \begin{IEEEeqnarray*}{rCl} + \phi({\color{red}S(y)}) &=& ({\color{blue}\sigma(y) \cdot \xi})^m\\ + &=& (\sigma(y))^m \cdot \xi^m\\ + &=& (\sigma(y))^m \cdot \phi(y). + \end{IEEEeqnarray*} + \end{subproof} + Applying $\gamma$ we obtain + \[ + [\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [x \mapsto (\sigma(\gamma(x))^n]. + \] + $S\circ \gamma$ is homotopic to $\gamma$, + so $[\phi \circ S \circ \gamma] = [\phi \circ \gamma]$. + Thus $[x \mapsto (\sigma(\gamma(x))^n] = 0$, + but that is a contradiction to (b) $\lightning$ +\end{refproof} + +Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$. +\begin{theorem} + $(X_n, \tau_n)$ is the maximal isometric extension of $(X_{n-1}, \tau_{n-1})$ + in $(X,\tau)$. +\end{theorem} +\begin{corollary} + The order of $(X,\tau)$ is $\omega$. +\end{corollary} +\todo{I could not attend lecture 21 as I was sick. The official notes on the lecture are very short. + Is something missing in the official notes?}