This commit is contained in:
parent
82f0dfd4de
commit
4c0c7730f1
1 changed files with 14 additions and 10 deletions
|
@ -6,12 +6,13 @@
|
||||||
Consider the projection $\pi\colon Y \times S^1 \to Y$.
|
Consider the projection $\pi\colon Y \times S^1 \to Y$.
|
||||||
By minimality of $Y$, we have $\pi(Z) = Y$.
|
By minimality of $Y$, we have $\pi(Z) = Y$.
|
||||||
Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal,
|
Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal,
|
||||||
so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.
|
so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.%
|
||||||
|
\footnote{actually $(1,\ldots,1, \theta) \cdot Z$, we identify $S^1$ and $\{0\}^d \times S^1 \subseteq Y \times S^1$.}
|
||||||
|
|
||||||
Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$.
|
Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$.
|
||||||
$H$ is a closed subgroup of $S^1$.
|
$H$ is a closed subgroup of $S^1$.
|
||||||
% H is a rotation of Z containing 1 (?)
|
% H is a rotation of Z containing 1 (?)
|
||||||
Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$),
|
Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$, so this cannot be the case),
|
||||||
or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$
|
or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$
|
||||||
by \yaref{fact:tau1minimal}.
|
by \yaref{fact:tau1minimal}.
|
||||||
|
|
||||||
|
@ -36,19 +37,22 @@
|
||||||
|
|
||||||
Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$.
|
Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$.
|
||||||
Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$
|
Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$
|
||||||
we get a continuous\todo{Why is this continuous?}
|
we get a continuous
|
||||||
function $\phi\colon Y \to S^1$
|
function $\phi\colon Y \to S^1$
|
||||||
such that
|
such that
|
||||||
\[
|
\[
|
||||||
Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}.
|
Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\},
|
||||||
\]
|
\]
|
||||||
% namely
|
namely
|
||||||
% \begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
% \phi\colon Y &\longrightarrow & S^1 \\
|
\phi\colon Y &\longrightarrow & S^1 \\
|
||||||
% y &\longmapsto & \beta^{(y)}.
|
y &\longmapsto & (\beta^{(y)})^m
|
||||||
% \end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
Z is isomorphic to $m$ copies of the graph of that function, hence
|
||||||
|
the graph is closed, so the function is continuous.
|
||||||
|
|
||||||
Note that $f(Z)$ is homeomorphic to $Y$.\todo{Why?}
|
Note that $f(Z)$ is homeomorphic to $Y$
|
||||||
|
(for every $y \in Y$, $\phi(y)$ is the unique element such that $(y,\phi(y)) \in f(Z)$).
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$.
|
$\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$.
|
||||||
|
|
Loading…
Reference in a new issue