diff --git a/inputs/lecture_21.tex b/inputs/lecture_21.tex index 3b5a660..9bf9441 100644 --- a/inputs/lecture_21.tex +++ b/inputs/lecture_21.tex @@ -6,12 +6,13 @@ Consider the projection $\pi\colon Y \times S^1 \to Y$. By minimality of $Y$, we have $\pi(Z) = Y$. Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal, - so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$. + so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.% + \footnote{actually $(1,\ldots,1, \theta) \cdot Z$, we identify $S^1$ and $\{0\}^d \times S^1 \subseteq Y \times S^1$.} Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$. $H$ is a closed subgroup of $S^1$. % H is a rotation of Z containing 1 (?) - Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$), + Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$, so this cannot be the case), or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$ by \yaref{fact:tau1minimal}. @@ -36,19 +37,22 @@ Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$. Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$ - we get a continuous\todo{Why is this continuous?} + we get a continuous function $\phi\colon Y \to S^1$ such that \[ - Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}. + Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}, \] - % namely - % \begin{IEEEeqnarray*}{rCl} - % \phi\colon Y &\longrightarrow & S^1 \\ - % y &\longmapsto & \beta^{(y)}. - % \end{IEEEeqnarray*} + namely + \begin{IEEEeqnarray*}{rCl} + \phi\colon Y &\longrightarrow & S^1 \\ + y &\longmapsto & (\beta^{(y)})^m + \end{IEEEeqnarray*} + Z is isomorphic to $m$ copies of the graph of that function, hence + the graph is closed, so the function is continuous. - Note that $f(Z)$ is homeomorphic to $Y$.\todo{Why?} + Note that $f(Z)$ is homeomorphic to $Y$ + (for every $y \in Y$, $\phi(y)$ is the unique element such that $(y,\phi(y)) \in f(Z)$). \begin{claim} $\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$.