Merge branch 'main' of https://git.abstractnonsen.se/josia-notes/w23-logic-3
Some checks failed
Build latex and deploy / checkout (push) Has been cancelled

This commit is contained in:
Josia Pietsch 2024-02-06 15:11:38 +01:00
commit 415ff41b60
Signed by: josia
GPG key ID: E70B571D66986A2D
23 changed files with 370 additions and 280 deletions

View file

@ -185,11 +185,11 @@ suffices to show that open balls in one metric are unions of open balls in the o
\begin{definition}[Our favourite Polish spaces] \begin{definition}[Our favourite Polish spaces]
\leavevmode \leavevmode
\begin{itemize} \begin{itemize}
\item $2^{\omega}$ is called the \vocab{Cantor set}. \item $2^{\N}$ is called the \vocab{Cantor set}.
(Consider $2$ with the discrete topology) (Consider $2$ with the discrete topology)
\item $\omega^{\omega}$ is called the \vocab{Baire space}. \item $\cN \coloneqq \N^{\N}$ is called the \vocab{Baire space}.
($\omega$ with descrete topology) ($\N$ with descrete topology)
\item $[0,1]^{\omega}$ is called the \vocab{Hilbert cube}. \item $\mathbb{H} \coloneqq [0,1]^{\N}$ is called the \vocab{Hilbert cube}.
($[0,1] \subseteq \R$ with the usual topology) ($[0,1] \subseteq \R$ with the usual topology)
\end{itemize} \end{itemize}
\end{definition} \end{definition}

View file

@ -205,8 +205,8 @@
\[ \[
D \subseteq \N^\N \mathbin{\text{\reflectbox{$\coloneqq$}}} \cN D \subseteq \N^\N \mathbin{\text{\reflectbox{$\coloneqq$}}} \cN
\] \]
and a continuous bijection from and a continuous bijection $f\colon D \to X$
$D$ onto $X$ (the inverse does not need to be continuous). (the inverse does not need to be continuous).
Moreover there is a continuous surjection $g: \cN \to X$ Moreover there is a continuous surjection $g: \cN \to X$
extending $f$. extending $f$.

View file

@ -64,7 +64,7 @@
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x\defon{n} = s\}$. Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x\defon{n} = s\}$.
Clearly $S$ is a pruned tree. Clearly $S$ is a pruned tree.
Moreover, since $D$ is closed, we have that (cf.~\yaref{s3e1}) Moreover, since $D$ is closed, we have that\footnote{cf.~\yaref{s3e1}}
\[ \[
D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}. D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}.
\] \]

View file

@ -78,18 +78,17 @@ where $X$ is a metrizable, usually second countable space.
we also have we also have
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$. $A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
We construct a $(2^\omega)^\omega \cong 2^\omega$-universal set We construct a $(2^{\omega \times \omega}) \cong 2^\omega$-universal set
for $\Sigma^0_\xi(X)$. for $\Sigma^0_\xi(X)$.
For $(y_n) \in (2^\omega)^\omega$ For $(y_{m,n}) \in (2^{\omega \times \omega})$
and $x \in X$ and $x \in X$
we set $((y_n), x) \in \cU$ we set $((y_{m,n}), x) \in \cU$
iff $\exists n.~(y_n, x) \in U_{\xi_n}$, iff $\exists n.~((y_{m,n})_{m < \omega}, x) \in U_{\xi_n}$,
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{y_n}$. i.e.~iff $\exists n.~x \in (U_{\xi_n})_{(y_{m,n})_{m < \omega}}$.
Let $A \in \Sigma^0_\xi(X)$. Let $A \in \Sigma^0_\xi(X)$.
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$. Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
% TODO Furthermore $\cU \in \Sigma^0_{\xi}((2^{\omega \times \omega} \times X)$.
Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$.
\end{proof} \end{proof}
\begin{remark} \begin{remark}
Since $2^{\omega}$ embeds Since $2^{\omega}$ embeds

View file

@ -45,9 +45,8 @@ We will see that not every analytic set is Borel.
\begin{remark} \begin{remark}
In the definition we can replace the assertion that In the definition we can replace the assertion that
$f$ is continuous $f$ is continuous
by the weaker assertion of $f$ being Borel. by the weaker assertion of $f$ being Borel.%
\todo{Copy exercise from sheet 5} \footnote{use \yaref{thm:clopenize}, cf.~\yaref{s6e2}}
% TODO WHY?
\end{remark} \end{remark}
\begin{theorem} \begin{theorem}
@ -155,7 +154,7 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
\begin{proof} \begin{proof}
Take $\cU \subseteq Y \times X \times \cN$ Take $\cU \subseteq Y \times X \times \cN$
which is $Y$-universal for $\Pi^0_1(X \times \cN)$. which is $Y$-universal for $\Pi^0_1(X \times \cN)$.
Let $\cV \coloneqq \proj_{Y \times Y}(\cU)$. Let $\cV \coloneqq \proj_{Y \times X}(\cU)$.
Then $\cV$ is $Y$-universal for $\Sigma^1_1(X)$: Then $\cV$ is $Y$-universal for $\Sigma^1_1(X)$:
\begin{itemize} \begin{itemize}
\item $\cV \in \Sigma^1_1(Y \times X)$ \item $\cV \in \Sigma^1_1(Y \times X)$

View file

@ -34,7 +34,8 @@ we need the following definition:
\begin{lemma} \begin{lemma}
\label{lem:lusinsephelp} \label{lem:lusinsephelp}
If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that
for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable. for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable,
then $P$ and $Q$ are Borel separable.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
For all $m, n$ pick $R_{m,n}$ Borel, For all $m, n$ pick $R_{m,n}$ Borel,
@ -42,7 +43,7 @@ we need the following definition:
and $Q_n \cap R_{m,n} = \emptyset$. and $Q_n \cap R_{m,n} = \emptyset$.
Then $R = \bigcup_m \bigcap_n R_{m,n}$ Then $R = \bigcup_m \bigcap_n R_{m,n}$
has the desired property has the desired property
that $R \subseteq R$ and $R \cap Q = \emptyset$. that $P \subseteq R$ and $R \cap Q = \emptyset$.
\end{proof} \end{proof}
\begin{notation} \begin{notation}
@ -60,7 +61,7 @@ we need the following definition:
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$. Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
Note that $A_s = \bigcup_m A_{s\concat m}$ Note that $A_s = \bigcup_m A_{s\concat m}$
and $B_ns = \bigcup_{n < \omega} B_{s\concat n}$. and $B_s = \bigcup_{n < \omega} B_{s\concat n}$.
In particular In particular
$A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$ $A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$

View file

@ -183,7 +183,7 @@ i.e.}{}
Let $X$ be Polish and $C \subseteq X$ coanalytic. Let $X$ be Polish and $C \subseteq X$ coanalytic.
Then $\phi\colon C \to \Ord$ Then $\phi\colon C \to \Ord$
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank} is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
provided that $\le^\ast$ and $<^\ast$ are coanalytic subsets of $X \times X$, provided that $\le^\ast_\phi$ and $<^\ast_\phi$ are coanalytic subsets of $X \times X$,
where where
$x \le^\ast_{\phi} y$ $x \le^\ast_{\phi} y$
iff iff

View file

@ -104,7 +104,7 @@
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast). \forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
\] \]
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.% We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}} \footnote{Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{picture}.}
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Let $\phi\colon R \to \Ord$ Let $\phi\colon R \to \Ord$

View file

@ -55,7 +55,7 @@
then $\xi = \alpha$ then $\xi = \alpha$
and and
\[ \[
E_\xi = E_\alpha = \bigcup_{\eta < \alpha} E_\xi = E_\alpha = \bigcup_{\eta < \alpha} E_\eta
\] \]
is a countable union of Borel sets by the previous case. is a countable union of Borel sets by the previous case.
\end{itemize} \end{itemize}
@ -233,6 +233,7 @@ Recall:
correspond to metrics witnessing that the flow is isometric. correspond to metrics witnessing that the flow is isometric.
\end{remark} \end{remark}
\begin{proposition} \begin{proposition}
\label{prop:isomextdistal}
An isometric extension of a distal flow is distal. An isometric extension of a distal flow is distal.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
@ -263,11 +264,12 @@ Recall:
% TODO THE inverse limit is A limit % TODO THE inverse limit is A limit
of $\Sigma$ iff of $\Sigma$ iff
\[ \[
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2). \forall x_1 \neq x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
\] \]
\end{definition} \end{definition}
\begin{proposition} \begin{proposition}
\label{prop:limitdistal}
A limit of distal flows is distal. A limit of distal flows is distal.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}

View file

@ -1,5 +1,4 @@
\lecture{16}{2023-12-08}{} \lecture{16}{2023-12-08}{}
% TODO ANKI-MARKER
$X$ is always compact metrizable. $X$ is always compact metrizable.
@ -18,16 +17,19 @@ $X$ is always compact metrizable.
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.} % and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
% \end{example} % \end{example}
\begin{proof} \begin{proof}
% TODO TODO TODO Think!
The action of $1$ determines $h$. The action of $1$ determines $h$.
Consider Consider
\[ \[
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{ continuous}\}, \{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
\] \]
where the topology is the uniform convergence topology. % TODO REF EXERCISE where the topology is the uniform convergence topology. % TODO REF EXERCISE
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$. Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
Since Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
i.e.~
\[ \[
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon \forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon,
% Here we use isometric
\] \]
we have by the Arzel\`a-Ascoli-Theorem % TODO REF we have by the Arzel\`a-Ascoli-Theorem % TODO REF
that $G$ is compact. that $G$ is compact.
@ -126,8 +128,8 @@ $X$ is always compact metrizable.
Every quasi-isometric flow is distal. Every quasi-isometric flow is distal.
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
\todo{TODO} The trivial flow is distal.
% The trivial flow is distal. Apply \yaref{prop:isomextdistal} and \yaref{prop:limitdistal}.
\end{proof} \end{proof}
\begin{theorem}[Furstenberg] \begin{theorem}[Furstenberg]
@ -138,7 +140,7 @@ By Zorn's lemma, this will follow from
\begin{theorem}[Furstenberg] \begin{theorem}[Furstenberg]
\label{thm:l16:3} \label{thm:l16:3}
Let $(X, T)$ be a minimal distal flow Let $(X, T)$ be a minimal distal flow
and let $(Y, T)$ be a proper factor. and let $(Y, T)$ be a proper factor.%
\footnote{i.e.~$(X,T)$ and $(Y,T)$ are not isomorphic} \footnote{i.e.~$(X,T)$ and $(Y,T)$ are not isomorphic}
Then there is another factor $(Z,T)$ of $(X,T)$ Then there is another factor $(Z,T)$ of $(X,T)$
which is a proper isometric extension of $Y$. which is a proper isometric extension of $Y$.
@ -199,7 +201,8 @@ The Hilbert cube $\bH = [0,1]^{\N}$
embeds all compact metric spaces. embeds all compact metric spaces.
Thus we can consider $K(\bH)$, Thus we can consider $K(\bH)$,
the space of compact subsets of $\bH$. the space of compact subsets of $\bH$.
$K(\bH)$ is a Polish space.\todo{Exercise} $K(\bH)$ is a Polish space.\footnote{cf.~\yaref{s9e2}, \yaref{s12e4}}
% TODO LEARN EXERCISES
Consider $K(\bH^2)$. Consider $K(\bH^2)$.
A flow $\Z \acts X$ corresponds to the graph of A flow $\Z \acts X$ corresponds to the graph of
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}

View file

@ -15,16 +15,16 @@ U_{\epsilon}(x,y) \coloneqq \{f \in X^X : d(x,f(y)) < \epsilon\}.
\] \]
for all $x,y \in X$, $\epsilon > 0$. for all $x,y \in X$, $\epsilon > 0$.
$X^{X}$ is a compact Hausdorff space. $X^{X}$ is a compact Hausdorff space.\footnote{cf.~\href{https://en.wikipedia.org/wiki/Tychonoff's_theorem}{Tychonoff's theorem}}
\begin{remark} \begin{remark}%
\todo{Copy from exercise sheet 10} \footnote{cf.~\yaref{s11e1}}
Let $f_0 \in X^X$ be fixed. Let $f_0 \in X^X$ be fixed.
\begin{itemize} \begin{itemize}
\item $X^X \ni f \mapsto f \circ f_0$ \item $X^X \ni f \mapsto f \circ f_0$
is continuous: is continuous:
Consider $\{f : f \circ f_0 \in U_{\epsilon}(x,y)\}$. Consider $\{f : f \circ f_0 \in U_{\epsilon}(x,y)\}$.
We have $ff_0 \in U_{\epsilon}(x,y)$ We have $f \circ f_0 \in U_{\epsilon}(x,y)$
iff $f \in U_\epsilon(x,f_0(y))$. iff $f \in U_\epsilon(x,f_0(y))$.
\item Fix $x_0 \in X$. \item Fix $x_0 \in X$.
Then $f \mapsto f(x_0)$ is continuous. Then $f \mapsto f(x_0)$ is continuous.
@ -34,27 +34,35 @@ $X^{X}$ is a compact Hausdorff space.
\end{remark} \end{remark}
\begin{definition} \begin{definition}
Let $(X,T)$ be a flow. \gist{%
Then the \vocab{Ellis semigroup} Let $(X,T)$ be a flow.
is defined by Then the \vocab{Ellis semigroup}
$E(X,T) \coloneqq \overline{T} \subseteq X^X$, is defined by
i.e.~identify $t \in T$ with $x \mapsto tx$ $E(X,T) \coloneqq \overline{T} \subseteq X^X$,
and take the closure in $X^X$. i.e.~identify $t \in T$ with $x \mapsto tx$
and take the closure in $X^X$.
}{%
The \vocab{Ellis semigroup} of a flow $(X,T)$
is $E(X,T) \coloneqq \overline{T} \subseteq X^X$.
}
\end{definition} \end{definition}
$E(X,T)$ is compact and Hausdorff, $E(X,T)$ is compact and Hausdorff,
since $X^X$ has these properties. since $X^X$ has these properties.
Properties of $(X,T)$ translate to properties of $E(X,T)$: \gist{
\begin{goal} Properties of $(X,T)$ translate to properties of $E(X,T)$:
We want to show that if $(X,T)$ is distal, \begin{goal}
then $E(X,T)$ is a group. We want to show that if $(X,T)$ is distal,
\end{goal} then $E(X,T)$ is a group.
\end{goal}
}{}
\begin{proposition} \begin{proposition}
$E(X,T)$ is a semigroup, $E(X,T)$ is a semigroup,
i.e.~closed under composition. i.e.~closed under composition.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
\gist{
Let $G \coloneqq E(X,T)$. Let $G \coloneqq E(X,T)$.
Take $t \in T$. We want to show that $tG \subseteq G$, Take $t \in T$. We want to show that $tG \subseteq G$,
i.e.~for all $h \in G$ we have $th \in G$. i.e.~for all $h \in G$ we have $th \in G$.
@ -63,7 +71,8 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
since $t^{-1}$ is continuous since $t^{-1}$ is continuous
and $G$ is compact. and $G$ is compact.
Then $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$. It is $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
So $G = \overline{T} \subseteq t^{-1}G$. So $G = \overline{T} \subseteq t^{-1}G$.
Hence $tG \subseteq G$. Hence $tG \subseteq G$.
@ -74,7 +83,7 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
\] \]
\end{claim} \end{claim}
\begin{subproof} \begin{subproof}
\todo{Homework} Cf.~\yaref{s11e1}
\end{subproof} \end{subproof}
Let $g \in G$. Let $g \in G$.
@ -87,17 +96,34 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
Since $G$ compact, Since $G$ compact,
and $Tg \subseteq G$, and $Tg \subseteq G$,
we have $ \overline{Tg} \subseteq G$. we have $ \overline{Tg} \subseteq G$.
}{
$G \coloneqq E(X,T)$.
\begin{itemize}
\item $\forall t \in T. ~ tG \subseteq G$:
\begin{itemize}
\item $t^{-1}G$ is compact.
\item $T \subseteq t^{-1}G$,
\item $\leadsto G = \overline{T} \subseteq t^{-1}G$,
i.e.~$tG \subseteq G$.
\end{itemize}
\item $\forall g \in G.~\overline{T}g = \overline{Tg}$ (cts.~map from compact to Hausdorff)
\item $\forall g \in G.~Gg \subseteq G$ :
$Gg = \overline{T}g = \overline{Tg} \overset{G \text{ compact}, Tg \subseteq G}{\subseteq} G$.
\end{itemize}
}
\end{proof} \end{proof}
\begin{definition} \begin{definition}
A \vocab{compact semigroup} $S$ A \vocab{compact semigroup} $S$
is a nonempty semigroup with a compact is a nonempty semigroup\footnote{may not contain inverses or the identity}
Hausdorff topology, with a compact Hausdorff topology,
such that $S \ni x \mapsto xs$ is continuous for all $s$. such that $S \ni x \mapsto xs$ is continuous for all $s$.
\end{definition} \end{definition}
\gist{
\begin{example} \begin{example}
The Ellis semigroup is a compact semigroup. The Ellis semigroup is a compact semigroup.
\end{example} \end{example}
}{}
\begin{lemma}[EllisNumakura] \begin{lemma}[EllisNumakura]
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura} \yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
@ -106,6 +132,7 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
i.e.~$f$ such that $f^2 = f$. i.e.~$f$ such that $f^2 = f$.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
\gist{
Using Zorn's lemma, take a $\subseteq$-minimal Using Zorn's lemma, take a $\subseteq$-minimal
compact subsemigroup $R$ of $S$ compact subsemigroup $R$ of $S$
and let $s \in R$. and let $s \in R$.
@ -122,25 +149,39 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
Thus $P = R$ by minimality, Thus $P = R$ by minimality,
so $s \in P$, so $s \in P$,
i.e.~$s^2 = s$. i.e.~$s^2 = s$.
}{
\begin{itemize}
\item Take $R \subseteq S$ minimal compact subsemigroup (Zorn),
$s \in R$.
\item $Rs \subseteq R \implies Rs = R$.
\item $P \coloneqq \{x \in R : xs = s\}$:
\begin{itemize}
\item $P \neq \emptyset$, since $s \in Rs$
\item $P$ compact, since $P = \alpha^{-1}(s) \cap R$,
$\alpha: x \mapsto xs$ cts.
\item $P = R \implies s^2 = s$.
\end{itemize}
\end{itemize}%
}
\end{proof} \end{proof}
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$, \gist{
since we already know that it has an identity, The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
in fact we have chosen $R = \{1\}$ in the proof. since we already know that it has an identity.
But it is interesting for other semigroups. %in fact we might have chosen $R = \{1\}$ in the proof.
But it is interesting for other semigroups.
}{}
\begin{theorem}[Ellis] \begin{theorem}[Ellis]
$(X,T)$ is distal iff $E(X,T)$ is a group. $(X,T)$ is distal iff $E(X,T)$ is a group.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Let $G \coloneqq E(X,T)$ and let $d$ be a metric on $X$.
Let $G \coloneqq E(X,T)$. \gist{
Let $d$ be a metric on $X$.
For all $g \in G$ we need to show that $x \mapsto gx$ is bijective. For all $g \in G$ we need to show that $x \mapsto gx$ is bijective.
If we had $gx = gy$, then $d(gx,gy) = 0$. If we had $gx = gy$, then $d(gx,gy) = 0$.
Then $\inf d(tx,ty) = 0$, but the flow is distal, Then $\inf_{t \in T} d(tx,ty) = 0$, but the flow is distal,
hence $x = y$. hence $x = y$.
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$. Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
@ -150,25 +191,46 @@ But it is interesting for other semigroups.
Since $f$ is injective, we get that $x = f(x)$, Since $f$ is injective, we get that $x = f(x)$,
i.e.~$f = \id$. i.e.~$f = \id$.
Take $g' \in G$ such that $f = g' \circ g$.% Since $f \in Gg$, there exists $g' \in G$ such that $f = g' \circ g$.
%\footnote{This exists since $f \in Gg$.}
It is $g' = g'gg'$, It is $g' = g'gg'$,
so $\forall x .~g'(x) = g'(g g'(x))$. so $\forall x .~g'(x) = g'(g g'(x))$.
Hence $g'$ is bijective Hence $g'$ is bijective
and $x = gg'(x)$, and $x = gg'(x)$,
i.e.~$g g' = \id$. i.e.~$g g' = \id$.
}{
\begin{itemize}
\item $x \mapsto gx$ injective for all $g \in G$:
\[gx = gy
\implies d(gx,gy) = 0
\implies \inf_{t \in T} d(tx, ty) = 0
\overset{\text{distal}}{\implies} x = y.
\]
\item Fix $g \in G$.
\begin{itemize}
\item $\Gamma \coloneqq Gg$ is a compact semigroup.
\item $\exists f\in \Gamma.~f^2 = f$ (\yaref{lem:ellisnumakura})
\item $f$ is injective, hence $f = \id$.
\item Take $g'$ such that $g'g = f$. $g'gg' = g' \implies gg' = \id$.
\end{itemize}
\end{itemize}
}
\todo{The other direction is left as an easy exercise.} \gist{
On the other hand if $(x_0,x_1)$ is proximal,
then there exists $g \in G$ such that $gx_0 = gx_1$.%
\footnote{cf.~\yaref{s11e1} (e)}
It follows that an inverse to $g$ can not exist.
}{If $(x_0,x_1)$ is proximal, there is $g \in G$ with $gx_0 = gx_1$, i.e.~no inverse to $g$.}
\end{proof} \end{proof}
Let $(X,T)$ be a flow. % Let $(X,T)$ be a flow.
Then by Zorn's lemma, there exists $X_0 \subseteq X$ % Then by Zorn's lemma, there exists $X_0 \subseteq X$
such that $(X_0, T)$ is minimal. % such that $(X_0, T)$ is minimal.
In particular, % In particular,
for $x \in X$ and $\overline{Tx} = Y$ % for $x \in X$ and $\overline{Tx} = Y$
we have that $(Y,T)$ is a flow. % we have that $(Y,T)$ is a flow.
However if we pick $y \in Y$, $Ty$ might not be dense. % However if we pick $y \in Y$, $Ty$ might not be dense.
% TODO: question! % TODO: question!
% TODO: think about this! % TODO: think about this!
% We want to a minimal subflow in a nice way: % We want to a minimal subflow in a nice way:
@ -181,6 +243,7 @@ However if we pick $y \in Y$, $Ty$ might not be dense.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Let $G = E(X,T)$. Let $G = E(X,T)$.
\gist{
Note that for all $x \in X$, Note that for all $x \in X$,
we have that $Gx \subseteq X$ is compact we have that $Gx \subseteq X$ is compact
and invariant under the action of $G$. and invariant under the action of $G$.
@ -188,17 +251,18 @@ However if we pick $y \in Y$, $Ty$ might not be dense.
Since $G$ is a group, the orbits partition $X$.% Since $G$ is a group, the orbits partition $X$.%
\footnote{Note that in general this does not hold for semigroups.} \footnote{Note that in general this does not hold for semigroups.}
% Clearly the sets $Gx$ cover $X$. We want to show that they We need to show that $(Gx, T)$ is minimal.
% partition $X$. Suppose that $y \in Gx$, i.e.~$Gx = Gy$.
% It suffices to show that $y \in Gx \implies Gy = Gx$. Since $g \mapsto gy$ is continuous,
we have $Gx = Gy = \overline{T}y = \overline{Ty}$,
% Take some $y \in Gx$. so $Ty$ is dense in $Gx$.
% Recall that $\overline{Ty} = \overline{T} y = Gy$. }{
% We have $\overline{Ty} \subseteq Gx$, \begin{itemize}
% so $Gy \subseteq Gx$. \item $G$ is a group, so the $G$-orbits partition $X$.
% Since $y = g_0 x \implies x = g_0^{-1}y$, we also have $x \in Gy$, \item Let $y \in Gx$, then $Gx \overset{y \in Gx}{=} Gy \overset{\text{def}}{=} \overline{T}y \overset{g \mapsto gy \text{ cts.}}{=} \overline{Ty}$,
% hence $Gx \subseteq Gy$ i.e.~$(Gx,T)$ is minimal.
% TODO: WHY? \end{itemize}
}
\end{proof} \end{proof}
\begin{corollary} \begin{corollary}
If $(X,T)$ is distal and minimal, If $(X,T)$ is distal and minimal,

View file

@ -3,14 +3,6 @@
The goal for this lecture is to give a very rough The goal for this lecture is to give a very rough
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$. sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
% \begin{theorem}[Furstenberg]
% Let $(X, T)$ be a minimal distal flow
% and let $(Z,T)$ be a proper factor of $X$%
% \footnote{i.e.~$(X,T)$ and $(Z,T)$ are not isomorphic.}
% Then three is another factor $(Y,T)$ of $(X,T)$
% which is a proper isometric extension of $Z$.
% \end{theorem}
Let $(X,T)$ be a distal flow. Let $(X,T)$ be a distal flow.
Then $G \coloneqq E(X,T)$ is a group. Then $G \coloneqq E(X,T)$ is a group.
@ -26,7 +18,9 @@ F(x,x') \coloneqq \inf \{d(gx, gx') : g \in G\}.
\item $F(x,x') = F(x', x)$, \item $F(x,x') = F(x', x)$,
\item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$. \item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$.
\item $F(gx, gx') = F(x,x')$ since $G$ is a group. \item $F(gx, gx') = F(x,x')$ since $G$ is a group.
\item $F$ is an upper semi-continuous function on $X^2$, \item $F$ is an \vocab{upper semi-continuous}\footnote{%
Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/c/c0/Upper_semi.svg}{picture}.}
function on $X^2$,
i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$. i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$.
This holds because $F$ is the infimum of continuous functions This holds because $F$ is the infimum of continuous functions
@ -52,77 +46,83 @@ This will follow from the following lemma:
\begin{lemma} \begin{lemma}
\label{lem:ftophelper} \label{lem:ftophelper}
Let $F(x,x') < a$. Let $F(x,x') < a$.
\gist{%
Then there exists $\epsilon > 0$ such that Then there exists $\epsilon > 0$ such that
whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$. whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$.
}{Then $\exists \epsilon > 0.~\forall x''.~F(x',x'') < \epsilon \implies F(x,x'') < a$.}
\end{lemma} \end{lemma}
\begin{refproof}{def:ftop} \begin{refproof}{def:ftop}
\gist{%
We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$, We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$,
then this intersection is the union then this intersection is the union
of sets of this kind. of sets of this kind.
Let $x' \in U_a(x_1)$. }{}
Let $x' \in U_a(x_1) \cap U_b(x_2)$.
Then by \yaref{lem:ftophelper}, Then by \yaref{lem:ftophelper},
there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$. there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$.
Similarly there exists $\epsilon_2 > 0$ Similarly there exists $\epsilon_2 > 0$\gist{
such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$. such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$.}{.}
So for $\epsilon \le \epsilon_1, \epsilon_2$, So for $\epsilon \le \epsilon_1, \epsilon_2$,
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$. we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
\end{refproof} \end{refproof}
\begin{refproof}{lem:ftophelper}% \begin{refproof}{lem:ftophelper}%
\footnote{This was not covered in class.} \notexaminable{\footnote{This was not covered in class.}
% TODO: maybe learn?
Let $T = \bigcup_n T_n$,% TODO Why does this exist? Let $T = \bigcup_n T_n$,% TODO Why does this exist?
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and $T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
let $G(x,x') \coloneqq \{(gx,gx') : g \in G\} \subseteq X \times X$. let $G(x,x') \coloneqq \{(gx,gx') : g \in G\} \subseteq X \times X$.
Take $b$ such that $F(x,x') < b < a$. Take $b$ such that $F(x,x') < b < a$.
Then $U = \{(u,u') \in G(x,x') : d(u,u') < b\}$ Then $U = \{(u,u') \in G(x,x') : d(u,u') < b\}$
is open in $G(x,x')$ is open in $G(x,x')$
and since $F(x,x') < b$ we have $U \neq \emptyset$. and since $F(x,x') < b$ we have $U \neq \emptyset$.
\begin{claim} \begin{claim}
There exists $n$ such that There exists $n$ such that
\[ \[
\forall (u,u') \in G(x,x').~T_n(u,u')\cap U \neq \emptyset. \forall (u,u') \in G(x,x').~T_n(u,u')\cap U \neq \emptyset.
\] \]
\end{claim} \end{claim}
\begin{subproof} \begin{subproof}
Suppose not. Suppose not.
Then for all $n$, there is $(u_n, u_n') \in G(x,x')$ Then for all $n$, there is $(u_n, u_n') \in G(x,x')$
with with
\[T_n(u_n, u_n') \subseteq G(x,x') \setminus U.\] \[T_n(u_n, u_n') \subseteq G(x,x') \setminus U.\]
Note that the RHS is closed. Note that the RHS is closed.
For $m > n$ we have For $m > n$ we have
$T_n(u_m, u'_m) \subseteq G(x,x') \setminus U$ $T_n(u_m, u'_m) \subseteq G(x,x') \setminus U$
since $T_n \subseteq T_m$. since $T_n \subseteq T_m$.
By compactness of $X$, By compactness of $X$,
there exists $v,v'$ and some subsequence there exists $v,v'$ and some subsequence
such that $(u_{n_k}, u'_{n_k}) \to (v,v')$. such that $(u_{n_k}, u'_{n_k}) \to (v,v')$.
So for all $n$ we have $T_n(v,v') \subseteq G(x,x') \setminus U$, So for all $n$ we have $T_n(v,v') \subseteq G(x,x') \setminus U$,
hence $T(v,v') \cap U = \emptyset$, hence $T(v,v') \cap U = \emptyset$,
so $G(v,v') \cap U = \emptyset$. so $G(v,v') \cap U = \emptyset$.
But this is a contradiction as $\emptyset\neq U \subseteq G(v,v')$. But this is a contradiction as $\emptyset\neq U \subseteq G(v,v')$.
\end{subproof} \end{subproof}
The map The map
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
T\times X&\longrightarrow & X \\ T\times X&\longrightarrow & X \\
(t,x) &\longmapsto & tx (t,x) &\longmapsto & tx
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
is continuous. is continuous.
Since $T_n$ is compact, Since $T_n$ is compact,
we have that $\{(x,t) \mapsto tx : t \in T_n\}$ we have that $\{(x,t) \mapsto tx : t \in T_n\}$
is equicontinuous.\todo{Sheet 11} is equicontinuous.\todo{Sheet 11}
So there is $\epsilon > 0$ such that So there is $\epsilon > 0$ such that
$d(x_1,x_2) < \epsilon \implies d(tx_1, tx_2) < a -b$ $d(x_1,x_2) < \epsilon \implies d(tx_1, tx_2) < a -b$
for all $t \in T_n$. for all $t \in T_n$.
Suppose now that $F(x', x'') < \epsilon$. Suppose now that $F(x', x'') < \epsilon$.
Then there is $t_0 \in T$ such that $d(t_0x', t_0x'') < \epsilon$, Then there is $t_0 \in T$ such that $d(t_0x', t_0x'') < \epsilon$,
hence $d(t t_0x', t t_0 x'') < a-b$ for all $t \in T_n$. hence $d(t t_0x', t t_0 x'') < a-b$ for all $t \in T_n$.
Since $(t_0x, t_0x') \in G(x,x')$, Since $(t_0x, t_0x') \in G(x,x')$,
there is $t_1 \in T_n$ there is $t_1 \in T_n$
with $(t_1t_0x, t_1t_0x') \in U$, with $(t_1t_0x, t_1t_0x') \in U$,
i.e.~$d(t_1t_0x, t_1t_0x') < b$ i.e.~$d(t_1t_0x, t_1t_0x') < b$
and therefore and therefore
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$. $F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
}
\end{refproof} \end{refproof}
Now assume $Z = \{\star\}$. Now assume $Z = \{\star\}$.
@ -168,8 +168,7 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
\item One can show that $H$ is a topological group and $(M,H)$ \item One can show that $H$ is a topological group and $(M,H)$
is a flow.\footnote{This is non-trivial.} is a flow.\footnote{This is non-trivial.}
\item Since $H$ is compact, \item Since $H$ is compact,
$(M,H)$ is equicontinuous, %\todo{We didn't define this} $(M,H)$ is equicontinuous, i.e.~it is isometric.
i.e.~it is isometric.
In particular, $(M,T)$ is isometric. In particular, $(M,T)$ is isometric.
\end{enumerate} \end{enumerate}
\item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial: \item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial:
@ -213,9 +212,9 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
Let $X$ be a metric space Let $X$ be a metric space
and $\Gamma\colon X \to \R$ be upper semicontinuous. and $\Gamma\colon X \to \R$ be upper semicontinuous.
Then the set of continuity points of $\Gamma$ is comeager. Then the set of continuity points of $\Gamma$ is comeager.
\todo{Missing figure: upper semicontinuous function}
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
\notexaminable{
Take $x$ such that $\Gamma$ is not continuous at $x$. Take $x$ such that $\Gamma$ is not continuous at $x$.
Then there is an $\epsilon > 0$ Then there is an $\epsilon > 0$
and $x_n \to x$ such that and $x_n \to x$ such that
@ -227,10 +226,11 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
\] \]
$X \setminus B_q = \{a \in X : \Gamma(a) < q\}$ $X \setminus B_q = \{a \in X : \Gamma(a) < q\}$
is open, i.e.~$B_q$ is closed. is open, i.e.~$B_q$ is closed.
Note that $x \in F_q \coloneqq B_q \setminus B_q^\circ$ Note that $x \in F_q \coloneqq B_q \setminus \inter(B_q)$
and $B_q \setminus B_q^\circ$ is nwd and $B_q \setminus \inter(B_q)$ is nwd
as it is closed and has empty interior, as it is closed and has empty interior,
so $\bigcup_{q \in \Q} F_q$ is meager. so $\bigcup_{q \in \Q} F_q$ is meager.
}
\end{proof} \end{proof}

View file

@ -1,5 +1,5 @@
\subsection{The order of a flow} \subsection{The Order of a Flow}
\lecture{19}{2023-12-19}{Orders of flows} \lecture{19}{2023-12-19}{Orders of Flows}
See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}. See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}.
@ -71,7 +71,6 @@ equicontinuity coincide.
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$, i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
$\beta < \alpha \le \Theta$ $\beta < \alpha \le \Theta$
are isometric, then the inverse limit $Y$ is isometric.% are isometric, then the inverse limit $Y$ is isometric.%
\todo{Why does an inverse limit exist?}
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d % https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d
\[\begin{tikzcd} \[\begin{tikzcd}
Y & {Y_\alpha} & X \\ Y & {Y_\alpha} & X \\
@ -193,8 +192,8 @@ More generally we can show:
on the fibers of $Y$ over $Z_2$ on the fibers of $Y$ over $Z_2$
and invariant under $T$. and invariant under $T$.
$\sigma$ is a metric, since if $\sigma$ is a metric,
if $\pi_2(y) = \pi_2(y')$ and $\sigma(y,y') = 0$, since if $\pi_2(y) = \pi_2(y')$ and $\sigma(y,y') = 0$,
then $\pi_1(y) = \pi_1(y')$ or $y = y'$. then $\pi_1(y) = \pi_1(y')$ or $y = y'$.
\end{proof} \end{proof}
@ -221,6 +220,7 @@ More generally we can show:
For this, we show that for all $\xi < \eta$, For this, we show that for all $\xi < \eta$,
$(X_\xi', T)$ is a factor of $(X_\xi ,T)$ $(X_\xi', T)$ is a factor of $(X_\xi ,T)$
using transfinite induction. using transfinite induction.
% https://q.uiver.app/#q=WzAsMTEsWzAsMSwiWCJdLFswLDIsIlhfXFxldGEiXSxbMCwwLCJYJ197XFxldGEnfSJdLFsxLDIsIlxcZG90cyJdLFsxLDAsIlxcZG90cyJdLFs0LDAsIlhfMSciXSxbNCwyLCJYXzEiXSxbMywwLCJYJ18yIl0sWzMsMiwiWF8yIl0sWzIsMCwiWCdfMyJdLFsyLDIsIlhfMyJdLFsyLDAsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMSwiIiwyLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTAsOF0sWzgsNl0sWzcsNV0sWzksN10sWzEwLDksIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs4LDcsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs2LDUsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFsxLDEwLCJcXHBpXzMiLDIseyJjdXJ2ZSI6MX1dLFsxLDgsIlxccGlfMiIsMix7ImN1cnZlIjozfV0sWzEsNiwiXFxwaV8xIiwyLHsiY3VydmUiOjV9XSxbMiw5LCJcXHBpJ18zIiwwLHsiY3VydmUiOi0xfV0sWzIsNywiXFxwaSdfMiIsMCx7ImN1cnZlIjotM31dLFsyLDUsIlxccGknXzEiLDAseyJjdXJ2ZSI6LTV9XV0= % https://q.uiver.app/#q=WzAsMTEsWzAsMSwiWCJdLFswLDIsIlhfXFxldGEiXSxbMCwwLCJYJ197XFxldGEnfSJdLFsxLDIsIlxcZG90cyJdLFsxLDAsIlxcZG90cyJdLFs0LDAsIlhfMSciXSxbNCwyLCJYXzEiXSxbMywwLCJYJ18yIl0sWzMsMiwiWF8yIl0sWzIsMCwiWCdfMyJdLFsyLDIsIlhfMyJdLFsyLDAsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMSwiIiwyLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTAsOF0sWzgsNl0sWzcsNV0sWzksN10sWzEwLDksIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs4LDcsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs2LDUsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFsxLDEwLCJcXHBpXzMiLDIseyJjdXJ2ZSI6MX1dLFsxLDgsIlxccGlfMiIsMix7ImN1cnZlIjozfV0sWzEsNiwiXFxwaV8xIiwyLHsiY3VydmUiOjV9XSxbMiw5LCJcXHBpJ18zIiwwLHsiY3VydmUiOi0xfV0sWzIsNywiXFxwaSdfMiIsMCx7ImN1cnZlIjotM31dLFsyLDUsIlxccGknXzEiLDAseyJjdXJ2ZSI6LTV9XV0=
\[\begin{tikzcd} \[\begin{tikzcd}
{X'_{\eta'}} & \dots & {X'_3} & {X'_2} & {X_1'} \\ {X'_{\eta'}} & \dots & {X'_3} & {X'_2} & {X_1'} \\
@ -242,7 +242,8 @@ More generally we can show:
\arrow["{\pi'_2}", curve={height=-18pt}, from=1-1, to=1-4] \arrow["{\pi'_2}", curve={height=-18pt}, from=1-1, to=1-4]
\arrow["{\pi'_1}", curve={height=-30pt}, from=1-1, to=1-5] \arrow["{\pi'_1}", curve={height=-30pt}, from=1-1, to=1-5]
\end{tikzcd}\] \end{tikzcd}\]
% TODO: induction start?
We'll only show the successor step:
Suppose we have Suppose we have
$(X'_\xi, T) = \theta((X_\xi, T)$. $(X'_\xi, T) = \theta((X_\xi, T)$.
@ -251,18 +252,21 @@ More generally we can show:
\[Y \coloneqq \{(\pi_\xi(x), \pi'_{\xi+1}(x)) \in X_\xi \times X'_{\xi+ 1}: x \in X\}.\] \[Y \coloneqq \{(\pi_\xi(x), \pi'_{\xi+1}(x)) \in X_\xi \times X'_{\xi+ 1}: x \in X\}.\]
Then Then
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIoWF97XFx4aSsxfSxUKSJdLFsyLDAsIihZLFQpIl0sWzMsMSwiKFgnX3tcXHhpKzF9LFQpIl0sWzIsMiwiKFgnX1xceGksVCkiXSxbMSwxLCIoWF9cXHhpLFQpIl0sWzAsNCwiXFx0ZXh0e21heC5+aXNvfSIsMV0sWzQsMywiXFx0aGV0YSIsMV0sWzIsMywie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsNCwie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsMl0sWzAsMSwiIiwwLHsiY3VydmUiOi0xLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0= % https://q.uiver.app/#q=WzAsNSxbMCwwLCIoWF97XFx4aSsxfSxUKSJdLFsyLDAsIihZLFQpIl0sWzMsMSwiKFgnX3tcXHhpKzF9LFQpIl0sWzIsMiwiKFgnX1xceGksVCkiXSxbMSwxLCIoWF9cXHhpLFQpIl0sWzAsNCwiXFx0ZXh0e21heC5+aXNvfSIsMV0sWzQsMywiXFx0aGV0YSIsMV0sWzIsMywie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsNCwie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsMl0sWzAsMSwiIiwwLHsiY3VydmUiOi0xLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwyLCJcXHBpJyIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs3LDMsIlxcdGhldGEnIiwwLHsibGV2ZWwiOjEsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDgsIlxccGkiLDIseyJsZXZlbCI6MSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoibm9uZSJ9LCJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d
\[\begin{tikzcd} \begin{tikzcd}
{(X_{\xi+1},T)} && {(Y,T)} \\ {(X_{\xi+1},T)} && {(Y,T)} \\
& {(X_\xi,T)} && {(X'_{\xi+1},T)} \\ & {(X_\xi,T)} && {(X'_{\xi+1},T)} \\
&& {(X'_\xi,T)} && {(X'_\xi,T)}
\arrow["{\text{max.~iso}}"{description}, from=1-1, to=2-2] \arrow["{\text{max.~iso}}"{description}, from=1-1, to=2-2]
\arrow["\theta"{description}, from=2-2, to=3-3] \arrow["\theta"{description}, from=2-2, to=3-3]
\arrow["{{\color{orange}\text{iso}}}"{description}, from=2-4, to=3-3] \arrow[""{name=0, anchor=center, inner sep=0}, "{{\color{orange}\text{iso}}}"{description}, from=2-4, to=3-3]
\arrow["{{\color{orange}\text{iso}}}"{description}, from=1-3, to=2-2] \arrow[""{name=1, anchor=center, inner sep=0}, "{{\color{orange}\text{iso}}}"{description}, from=1-3, to=2-2]
\arrow[from=1-3, to=2-4] \arrow[from=1-3, to=2-4]
\arrow[curve={height=-6pt}, dashed, from=1-1, to=1-3] \arrow[curve={height=-6pt}, dashed, from=1-1, to=1-3]
\end{tikzcd}\] \arrow["{\pi'}", draw=none, from=1-3, to=2-4]
\arrow["{\theta'}", draw=none, from=0, to=3-3]
\arrow["\pi"', draw=none, from=1-3, to=1]
\end{tikzcd}
The diagram commutes, since all maps are the induced maps. The diagram commutes, since all maps are the induced maps.
By definition of $Y$ is clear that $\pi$ and $\pi'$ separate points in $Y$. By definition of $Y$ is clear that $\pi$ and $\pi'$ separate points in $Y$.
@ -275,6 +279,9 @@ More generally we can show:
In particular, In particular,
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$. $(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
\end{proof} \end{proof}
% TODO ANKI-MARKER
\begin{example}[{\cite[p. 513]{Furstenberg}}] \begin{example}[{\cite[p. 513]{Furstenberg}}]
\label{ex:19:inftorus} \label{ex:19:inftorus}
Let $X$ be the infinite torus Let $X$ be the infinite torus

View file

@ -1,5 +1,6 @@
\lecture{20}{2024-01-09}{The Infinite Torus} \lecture{20}{2024-01-09}{The Infinite Torus}
\gist{
\begin{example} \begin{example}
\footnote{This is the same as \yaref{ex:19:inftorus}, \footnote{This is the same as \yaref{ex:19:inftorus},
but with new notation.} but with new notation.}
@ -14,9 +15,10 @@
\begin{remark}+ \begin{remark}+
Note that we can identify $S^1$ with a subset of $\C$ (and use multiplication) Note that we can identify $S^1$ with a subset of $\C$ (and use multiplication)
or with $\faktor{\R}{\Z}$ (and use addition). or with $\faktor{\R}{\Z}$ (and use addition).
In the lecture both notations were used.% to make things extra confusing. In the lecture both notations were used. % to make things extra confusing.
Here I'll try to only use multiplicative notation. Here I'll try to only use multiplicative notation.
\end{remark} \end{remark}
}{}
We will be studying projections to the first $d$ coordinates, We will be studying projections to the first $d$ coordinates,
i.e. i.e.
\[ \[

View file

@ -78,7 +78,7 @@
is Borel for all $\alpha < \omega_1$. is Borel for all $\alpha < \omega_1$.
\end{enumerate} \end{enumerate}
\end{theorem} \end{theorem}
\todo{This was already stated as \yaref{thm:beleznayforeman} in lecture 16 \todo{This was already stated as \yaref{thm:beleznay-foreman} in lecture 16
and should not have two numbers.} and should not have two numbers.}
A few words on the proof: A few words on the proof:
@ -86,7 +86,7 @@ Let $\mathbb{K} = S^1$
and $I$ a countable linear order. and $I$ a countable linear order.
Let $\mathbb{K}^I$ be the product of $|I|$ many $\mathbb{K}$, Let $\mathbb{K}^I$ be the product of $|I|$ many $\mathbb{K}$,
$\mathbb{K}^{<i} \coloneqq \mathbb{K}^{\{j : j < i\}}$ $\mathbb{K}^{<i} \coloneqq \mathbb{K}^{\{j : j < i\}}$
and $\pi_{i}\colon \mathbb{K}^{I} \to \mathbb{K}^{<i}$\todo{maybe call it $\pi_{<i}$?} and $\pi_{i}\colon \mathbb{K}^{I} \to \mathbb{K}^{<i}$% \todo{maybe call it $\pi_{<i}$?}
the projection. the projection.
Let $\mathbb{K}_I \coloneqq \prod_{i \in I} C(\mathbb{K}^{<i}, \mathbb{K})$. Let $\mathbb{K}_I \coloneqq \prod_{i \in I} C(\mathbb{K}^{<i}, \mathbb{K})$.
@ -145,48 +145,54 @@ For this we define
This is the same as for iterated skew shifts. This is the same as for iterated skew shifts.
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$, % TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$. % $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
\item Minimality: \item Minimality:%
\gist{%
\footnote{This is not relevant for the exam.}
Let $\langle E_n : n < \omega \rangle$ Let $\langle E_n : n < \omega \rangle$
be an enumeration of a countable basis for $\mathbb{K}^I$. be an enumeration of a countable basis for $\mathbb{K}^I$.
For all $n$ let For all $n$ let
\[ \[
U_n \coloneqq \{\overline{f} \in \mathbb{K}_I : \exists k \in \Z.~ f^k(\overline{1}) \in E_n\} U_n \coloneqq \{\overline{f} \in \mathbb{K}_I : \exists k \in \Z.~ f^k(\overline{1}) \in E_n\}
\] \]
where $f = E_I \overline{f}$ and $\overline{1} = (1,1,1,\ldots)$. where $f = E_I \overline{f}$ and $\overline{1} = (1,1,1,\ldots)$.
Beleznay and Foreman showed that $U_n$ is open Beleznay and Foreman showed that $U_n$ is open
and dense for all $n$. and dense for all $n$.
So if $\overline{f} \in \bigcap_{n} U_n$, then $\overline{1}$ So if $\overline{f} \in \bigcap_{n} U_n$, then $\overline{1}$
is dense in $\overline{x} \mapsto f(\overline{x})$. is dense in $\overline{x} \mapsto f(\overline{x})$.
Since the flow is distal, it suffices to show Since the flow is distal, it suffices to show
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}). that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
}{ Not relevant for the exam.}
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$. \item The order of the flow is $\eta$:%
Consider the flows we get from $(f_i)_{i < j}$ \gist{%
resp.~$(f_i)_{i \le j}$ \footnote{This is not relevant for the exam.}
denoted by $X_{<j}$ resp.~$X_{\le j}$. Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
We aim to show that $X_{\le j} \to X_{<j}$ Consider the flows we get from $(f_i)_{i < j}$
is a maximal isometric extension for comeagerly many $\overline{f}$. resp.~$(f_i)_{i \le j}$
denoted by $X_{<j}$ resp.~$X_{\le j}$.
We aim to show that $X_{\le j} \to X_{<j}$
is a maximal isometric extension for comeagerly many $\overline{f}$.
The following open dense sets are used to make sure that all isometric extensions The following open dense sets are used to make sure that all isometric extensions
are maximal and hence the order of the flow is $\eta$: are maximal and hence the order of the flow is $\eta$:
Fix a countable dense set $(\overline{x_n})$ in $\mathbb{K}^I$. Fix a countable dense set $(\overline{x_n})$ in $\mathbb{K}^I$.
For $\epsilon \in \Q$ let For $\epsilon \in \Q$ let
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
V_{j,m,n,\epsilon} &\coloneqq \{\overline{f} \in \mathbb{K}_I :& \\ V_{j,m,n,\epsilon} &\coloneqq \{\overline{f} \in \mathbb{K}_I :& \\
&&\text{if } \Pi_{j+1}(\overline{x}_n) = \Pi_{j+1}(\overline{x_m}),\\ &&\text{if } \Pi_{j+1}(\overline{x}_n) = \Pi_{j+1}(\overline{x_m}),\\
&&\text{then there are $k_m$, $k_n$, $\overline{z}$ such that}\\ &&\text{then there are $k_m$, $k_n$, $\overline{z}$ such that}\\
&&\pi_j(\overline{x_n}) = \pi_j(\overline{z}), \forall k> j+1.~z_k = 1,\\ &&\pi_j(\overline{x_n}) = \pi_j(\overline{z}), \forall k> j+1.~z_k = 1,\\
&&d(f^{k_m}(\overline{x_m}), f^{k_m}(\overline{z})) < \epsilon \text{ and }\\ &&d(f^{k_m}(\overline{x_m}), f^{k_m}(\overline{z})) < \epsilon \text{ and }\\
&&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon\\ &&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon\\
&&\} &&\}
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Beleznay and Foreman show that this is open and dense.% Beleznay and Foreman show that this is open and dense.%
\footnote{This is not relevant for the exam.} % TODO similarities to the lemma used today
% TODO similarities to the lemma used today }{ Not relevant for the exam.}
\end{itemize} \end{itemize}
\end{proof} \end{proof}

View file

@ -1,5 +1,9 @@
\lecture{23}{2024-01-19}{More sketches of ideas of Beleznay and Foreman} \lecture{23}{2024-01-19}{More sketches of ideas of Beleznay and Foreman}
% TODO read notes
% TODO def. almost distal
% From Lecture 23, you need to know the proposition on page 7 (with the proof), but I won't ask you for other proofs from that lecture
\begin{notation} \begin{notation}
Let $X$ be a Polish space and $\cP$ a property of elements of $X$, Let $X$ be a Polish space and $\cP$ a property of elements of $X$,
then we say that $x_0 \in X$ is \vocab{generic} then we say that $x_0 \in X$ is \vocab{generic}
@ -24,47 +28,49 @@ Let $I$ be a linear order
\end{theorem} \end{theorem}
\begin{proof}[sketch] \begin{proof}[sketch]
Consider $\WO(\N) \subset \LO(\N)$. \notexaminable{%
We know that this is $\Pi_1^1$-complete. % TODO ref Consider $\WO(\N) \subset \LO(\N)$.
We know that this is $\Pi_1^1$-complete. % TODO ref
Let Let
\begin{IEEEeqnarray*}{rCll} \begin{IEEEeqnarray*}{rCll}
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\ S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\} &&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\todo{Exercise sheet 12} \todo{Exercise sheet 12}
$S$ is Borel. $S$ is Borel.
We will % TODO ? We will % TODO ?
construct a reduction construct a reduction
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\ M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\
% \alpha &\longmapsto & M(\alpha) % \alpha &\longmapsto & M(\alpha)
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
We want that $\alpha \in \WO(\N) \iff M(\alpha)$ We want that $\alpha \in \WO(\N) \iff M(\alpha)$
codes a distal minimal flow of rank $\alpha$. codes a distal minimal flow of rank $\alpha$.
\begin{enumerate}[1.] \begin{enumerate}[1.]
\item For any $\alpha \in S$, $M(\alpha)$ is a code for \item For any $\alpha \in S$, $M(\alpha)$ is a code for
a flow which is coded by a generic $(f_i)_{i \in I}$. a flow which is coded by a generic $(f_i)_{i \in I}$.
Specifically we will take a flow Specifically we will take a flow
corresponding to some $(f_i)_{i \in I}$ corresponding to some $(f_i)_{i \in I}$
which is in the intersection of all which is in the intersection of all
$U_n$, $V_{j,m,n,\frac{p}{q}}$ $U_n$, $V_{j,m,n,\frac{p}{q}}$
(cf.~proof of \yaref{thm:distalminimalofallranks}). (cf.~proof of \yaref{thm:distalminimalofallranks}).
\item If $\alpha \in \WO(\N)$, \item If $\alpha \in \WO(\N)$,
then additionally $(f_i)_{i \in I}$ will code then additionally $(f_i)_{i \in I}$ will code
a distal minimal flow of ordertype $\alpha$. a distal minimal flow of ordertype $\alpha$.
\end{enumerate} \end{enumerate}
One can get a Borel map $S \ni \alpha \mapsto \{T_n^{\alpha} : n \in \N\}$, One can get a Borel map $S \ni \alpha \mapsto \{T_n^{\alpha} : n \in \N\}$,
such that $T^{\alpha}_n$ is closed, such that $T^{\alpha}_n$ is closed,
$T^{\alpha}_n \neq \emptyset$, $\diam(T^\alpha_n) \xrightarrow{n \to \infty} 0$, $T^{\alpha}_n \neq \emptyset$, $\diam(T^\alpha_n) \xrightarrow{n \to \infty} 0$,
$T^\alpha_{n+1} \subseteq T^\alpha_n$, $T^\alpha_{n+1} \subseteq T^\alpha_n$,
$T^{\alpha}_n \subseteq W^{\alpha}_n$, $T^{\alpha}_n \subseteq W^{\alpha}_n$,
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$. where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$. Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
}
\end{proof} \end{proof}
\begin{lemma} \begin{lemma}
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal
@ -102,28 +108,31 @@ Let $I$ be a linear order
The order %TODO (Furstenberg rank) The order %TODO (Furstenberg rank)
is a $\Pi^1_1$-rank. is a $\Pi^1_1$-rank.
\end{theorem} \end{theorem}
For the proof one shows that $\le^\ast$ and $<^\ast$ \begin{proof}[sketch]
are $\Pi^1_1$, where \notexaminable{
\begin{enumerate}[(1)] For the proof one shows that $\le^\ast$ and $<^\ast$
\item $p_1 \le^\ast p_2$ iff $p_1$ codes are $\Pi^1_1$, where
a distal minimal flow and if \begin{enumerate}[(1)]
$p_2$ also codes a distal minimal flow, \item $p_1 \le^\ast p_2$ iff $p_1$ codes
then $\mathop{order}(p_1) \le \mathop{order}(p_2)$. a distal minimal flow and if
\item $p_1 <^\ast p_2$ iff $p_1$ codes $p_2$ also codes a distal minimal flow,
a distal minimal flow and if then $\mathop{order}(p_1) \le \mathop{order}(p_2)$.
$p_2$ also codes a distal minimal flow, \item $p_1 <^\ast p_2$ iff $p_1$ codes
then $\mathop{order}(p_1) < \mathop{order}(p_2)$. a distal minimal flow and if
\end{enumerate} $p_2$ also codes a distal minimal flow,
then $\mathop{order}(p_1) < \mathop{order}(p_2)$.
One uses that $(Y_{i+1}, T)$ is a maximal \end{enumerate}
isometric extension of $(Y_i,T)$
ind $(X,T)$
iff for all $x_1,x_2$ from a fixed countable dense set
in $X$,
for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$,
there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$,
$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
One uses that $(Y_{i+1}, T)$ is a maximal
isometric extension of $(Y_i,T)$
ind $(X,T)$
iff for all $x_1,x_2$ from a fixed countable dense set
in $X$,
for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$,
there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$,
$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
}
\end{proof}
\begin{proposition} \begin{proposition}
The order of a minimal distal flow on a separable, The order of a minimal distal flow on a separable,
metric space is countable. metric space is countable.
@ -169,4 +178,3 @@ $F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
Then $\alpha \mapsto U_\alpha$ is an injection. Then $\alpha \mapsto U_\alpha$ is an injection.
\end{proof} \end{proof}

View file

@ -17,17 +17,19 @@
we have $X \in \cU \lor \N \setminus X \in \cU$. we have $X \in \cU \lor \N \setminus X \in \cU$.
\end{enumerate} \end{enumerate}
\end{definition} \end{definition}
\gist{
\begin{remark} \begin{remark}
\begin{itemize} \begin{itemize}
\item If $X \cup Y \in \cU$ then $X \in \cU \lor Y$ or $Y \in \cU$: \item If $X \cup Y \in \cU$ then $X \in \cU$ or $Y \in \cU$:
Consider $((\N \setminus X) \cap (\N \setminus Y) = \N \setminus (X \cup Y)$. Consider $((\N \setminus X) \cap (\N \setminus Y) = \N \setminus (X \cup Y)$.
\item Every filter can be extended to an ultrafilter. \item Every filter can be extended to an ultrafilter.
(Zorn's lemma) (Zorn's lemma)
\end{itemize} \end{itemize}
\end{remark} \end{remark}
}{}
\begin{definition} \begin{definition}
An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial} An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial}
if it is of the form iff it is of the form
\[ \[
\hat{n} = \{X \subseteq \N : n \in X\}. \hat{n} = \{X \subseteq \N : n \in X\}.
\] \]
@ -46,9 +48,9 @@
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas. Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
\begin{enumerate}[(1)] \begin{enumerate}[(1)]
\item $(\cU n) (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$. \item $(\cU n) ~ (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$.
\item $(\cU n) (\phi(n) \lor \psi(m)) \iff (\cU n) \phi(n) \lor (\cU n) \psi(n)$. \item $(\cU n) ~ (\phi(n) \lor \psi(m)) \iff (\cU n) ~ \phi(n) \lor (\cU n) ~ \psi(n)$.
\item $(\cU n) \lnot \phi(n) \iff \lnot (\cU n) \phi(n)$. \item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
\end{enumerate} \end{enumerate}
\end{observe} \end{observe}
\begin{lemma} \begin{lemma}
@ -59,7 +61,7 @@
there is a unique $x \in X$, there is a unique $x \in X$,
such that such that
\[ \[
(\cU n) (x_n \in G) (\cU n)~(x_n \in G)
\] \]
for every neighbourhood% for every neighbourhood%
\footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.} \footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.}

View file

@ -108,13 +108,13 @@ This requires the use of the axiom of choice.
\item Let $B = \{x \in \R | (F_i)_x \text{ is meager}\}$. \item Let $B = \{x \in \R | (F_i)_x \text{ is meager}\}$.
Then $B$ is comeager in $\R$ and $|B| = \fc$. Then $B$ is comeager in $\R$ and $|B| = \fc$.
We have $|B| = \fc$, since $B$ contains a comeager We have $|B| = \fc$:
$G_\delta$ set, $B'$: $B$ contains a comeager $G_\delta$ set, say $B'$.
$B'$ is Polish, $B'$ is Polish,
hence $B' = P \cup C$ hence $B' = P \cup C$
for $P$ perfect and $C$ countable, for $P$ perfect and $C$ countable,
and $|P| \in \{\fc, 0\}$. and $|P| \in \{\fc, 0\}$.
But $B'$ can't contain isolated point. But $B'$ can't contain an isolated point.
\item We use $B$ to find a suitable point $a_i$: \item We use $B$ to find a suitable point $a_i$:
To ensure that (i) holds, it suffices to chose To ensure that (i) holds, it suffices to chose

View file

@ -57,7 +57,7 @@ form a $\sigma$-algebra).
Let $(U_n)_{n < \omega}$ be a countable base of $(X,\tau)$. Let $(U_n)_{n < \omega}$ be a countable base of $(X,\tau)$.
Each $U_n$ is open, hence Borel, Each $U_n$ is open, hence Borel,
so by a theorem from the lecture$^{\text{tm}}$ so by \hyperref[thm:clopenize]{a theorem from the lecture™}
there exists a Polish topology $\tau_n$ there exists a Polish topology $\tau_n$
such that $U_n$ is clopen, preserving Borel sets. such that $U_n$ is clopen, preserving Borel sets.

View file

@ -116,7 +116,7 @@ amounts to a finite number of conditions on the preimage.
\] \]
is closed as an intersection of clopen sets. is closed as an intersection of clopen sets.
Clearly $\pr_{LO(\N)}(\cF)$ is the complement Clearly $\proj_{LO(\N)}(\cF)$ is the complement
of $WO(\N)$, hence $WO(\N)$ is coanalytic. of $WO(\N)$, hence $WO(\N)$ is coanalytic.
\end{itemize} \end{itemize}
\nr 4 \nr 4

View file

@ -59,6 +59,8 @@
and since $B$ is Hausdorff, compact subsets of $B$ are closed. and since $B$ is Hausdorff, compact subsets of $B$ are closed.
\end{subproof} \end{subproof}
\nr 1
Let $(X,T)$ be a flow and $G = E(X,T)$ its Ellis semigroup. Let $(X,T)$ be a flow and $G = E(X,T)$ its Ellis semigroup.
Let $d$ be a compatible metric on $X$. Let $d$ be a compatible metric on $X$.
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
@ -100,7 +102,7 @@ Let $d$ be a compatible metric on $X$.
Consider $\ev_x \colon X^X \to X$. Consider $\ev_x \colon X^X \to X$.
$X^X$ is compact and $X$ is Hausdorff. $X^X$ is compact and $X$ is Hausdorff.
Hence we can apply Hence we can apply
\label{fact:t12:2}. \yaref{fact:t12:2}.
\item Let $x_0 \neq x_1 \in X$. \item Let $x_0 \neq x_1 \in X$.
Then $(x_0,x_1)$ is a proximal pair iff $d(gx_0,gx_1) = 0$ Then $(x_0,x_1)$ is a proximal pair iff $d(gx_0,gx_1) = 0$

View file

@ -17,18 +17,12 @@ Then $t_n y \to (0) = t_n x$.
% TODO this is redundant
\begin{refproof}{fact:isometriciffequicontinuous}. \begin{refproof}{fact:isometriciffequicontinuous}.
$d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$ $d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$
induce the same topology. induce the same topology.
Let $\tau, \tau'$ be the corresponding topologies. Let $\tau, \tau'$ be the corresponding topologies.
$\tau \subseteq \tau'$ easy, $\tau \subseteq \tau'$ easy,
$\tau' \subseteq \tau'$ : use equicontinuity. $\tau' \subseteq \tau'$ : use equicontinuity.
\end{refproof} \end{refproof}

View file

@ -156,5 +156,6 @@
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}} \newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}} \newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}} \newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
\newcommand\notexaminable[1]{\gist{\footnote{Not relevant for the exam.}#1}{Not relevant for the exam.}}
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography} \usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}