Merge branch 'main' of https://git.abstractnonsen.se/josia-notes/w23-logic-3
Some checks failed
Build latex and deploy / checkout (push) Has been cancelled
Some checks failed
Build latex and deploy / checkout (push) Has been cancelled
This commit is contained in:
commit
415ff41b60
23 changed files with 370 additions and 280 deletions
|
@ -185,11 +185,11 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
\begin{definition}[Our favourite Polish spaces]
|
\begin{definition}[Our favourite Polish spaces]
|
||||||
\leavevmode
|
\leavevmode
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $2^{\omega}$ is called the \vocab{Cantor set}.
|
\item $2^{\N}$ is called the \vocab{Cantor set}.
|
||||||
(Consider $2$ with the discrete topology)
|
(Consider $2$ with the discrete topology)
|
||||||
\item $\omega^{\omega}$ is called the \vocab{Baire space}.
|
\item $\cN \coloneqq \N^{\N}$ is called the \vocab{Baire space}.
|
||||||
($\omega$ with descrete topology)
|
($\N$ with descrete topology)
|
||||||
\item $[0,1]^{\omega}$ is called the \vocab{Hilbert cube}.
|
\item $\mathbb{H} \coloneqq [0,1]^{\N}$ is called the \vocab{Hilbert cube}.
|
||||||
($[0,1] \subseteq \R$ with the usual topology)
|
($[0,1] \subseteq \R$ with the usual topology)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
|
@ -205,8 +205,8 @@
|
||||||
\[
|
\[
|
||||||
D \subseteq \N^\N \mathbin{\text{\reflectbox{$\coloneqq$}}} \cN
|
D \subseteq \N^\N \mathbin{\text{\reflectbox{$\coloneqq$}}} \cN
|
||||||
\]
|
\]
|
||||||
and a continuous bijection from
|
and a continuous bijection $f\colon D \to X$
|
||||||
$D$ onto $X$ (the inverse does not need to be continuous).
|
(the inverse does not need to be continuous).
|
||||||
|
|
||||||
Moreover there is a continuous surjection $g: \cN \to X$
|
Moreover there is a continuous surjection $g: \cN \to X$
|
||||||
extending $f$.
|
extending $f$.
|
||||||
|
|
|
@ -64,7 +64,7 @@
|
||||||
|
|
||||||
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x\defon{n} = s\}$.
|
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x\defon{n} = s\}$.
|
||||||
Clearly $S$ is a pruned tree.
|
Clearly $S$ is a pruned tree.
|
||||||
Moreover, since $D$ is closed, we have that (cf.~\yaref{s3e1})
|
Moreover, since $D$ is closed, we have that\footnote{cf.~\yaref{s3e1}}
|
||||||
\[
|
\[
|
||||||
D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}.
|
D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}.
|
||||||
\]
|
\]
|
||||||
|
|
|
@ -78,18 +78,17 @@ where $X$ is a metrizable, usually second countable space.
|
||||||
we also have
|
we also have
|
||||||
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
||||||
|
|
||||||
We construct a $(2^\omega)^\omega \cong 2^\omega$-universal set
|
We construct a $(2^{\omega \times \omega}) \cong 2^\omega$-universal set
|
||||||
for $\Sigma^0_\xi(X)$.
|
for $\Sigma^0_\xi(X)$.
|
||||||
For $(y_n) \in (2^\omega)^\omega$
|
For $(y_{m,n}) \in (2^{\omega \times \omega})$
|
||||||
and $x \in X$
|
and $x \in X$
|
||||||
we set $((y_n), x) \in \cU$
|
we set $((y_{m,n}), x) \in \cU$
|
||||||
iff $\exists n.~(y_n, x) \in U_{\xi_n}$,
|
iff $\exists n.~((y_{m,n})_{m < \omega}, x) \in U_{\xi_n}$,
|
||||||
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{y_n}$.
|
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{(y_{m,n})_{m < \omega}}$.
|
||||||
|
|
||||||
Let $A \in \Sigma^0_\xi(X)$.
|
Let $A \in \Sigma^0_\xi(X)$.
|
||||||
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
|
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
|
||||||
% TODO
|
Furthermore $\cU \in \Sigma^0_{\xi}((2^{\omega \times \omega} \times X)$.
|
||||||
Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$.
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Since $2^{\omega}$ embeds
|
Since $2^{\omega}$ embeds
|
||||||
|
|
|
@ -45,9 +45,8 @@ We will see that not every analytic set is Borel.
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
In the definition we can replace the assertion that
|
In the definition we can replace the assertion that
|
||||||
$f$ is continuous
|
$f$ is continuous
|
||||||
by the weaker assertion of $f$ being Borel.
|
by the weaker assertion of $f$ being Borel.%
|
||||||
\todo{Copy exercise from sheet 5}
|
\footnote{use \yaref{thm:clopenize}, cf.~\yaref{s6e2}}
|
||||||
% TODO WHY?
|
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
|
@ -155,7 +154,7 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Take $\cU \subseteq Y \times X \times \cN$
|
Take $\cU \subseteq Y \times X \times \cN$
|
||||||
which is $Y$-universal for $\Pi^0_1(X \times \cN)$.
|
which is $Y$-universal for $\Pi^0_1(X \times \cN)$.
|
||||||
Let $\cV \coloneqq \proj_{Y \times Y}(\cU)$.
|
Let $\cV \coloneqq \proj_{Y \times X}(\cU)$.
|
||||||
Then $\cV$ is $Y$-universal for $\Sigma^1_1(X)$:
|
Then $\cV$ is $Y$-universal for $\Sigma^1_1(X)$:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\cV \in \Sigma^1_1(Y \times X)$
|
\item $\cV \in \Sigma^1_1(Y \times X)$
|
||||||
|
|
|
@ -34,7 +34,8 @@ we need the following definition:
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:lusinsephelp}
|
\label{lem:lusinsephelp}
|
||||||
If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that
|
If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that
|
||||||
for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable.
|
for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable,
|
||||||
|
then $P$ and $Q$ are Borel separable.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
For all $m, n$ pick $R_{m,n}$ Borel,
|
For all $m, n$ pick $R_{m,n}$ Borel,
|
||||||
|
@ -42,7 +43,7 @@ we need the following definition:
|
||||||
and $Q_n \cap R_{m,n} = \emptyset$.
|
and $Q_n \cap R_{m,n} = \emptyset$.
|
||||||
Then $R = \bigcup_m \bigcap_n R_{m,n}$
|
Then $R = \bigcup_m \bigcap_n R_{m,n}$
|
||||||
has the desired property
|
has the desired property
|
||||||
that $R \subseteq R$ and $R \cap Q = \emptyset$.
|
that $P \subseteq R$ and $R \cap Q = \emptyset$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
|
@ -60,7 +61,7 @@ we need the following definition:
|
||||||
|
|
||||||
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
|
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
|
||||||
Note that $A_s = \bigcup_m A_{s\concat m}$
|
Note that $A_s = \bigcup_m A_{s\concat m}$
|
||||||
and $B_ns = \bigcup_{n < \omega} B_{s\concat n}$.
|
and $B_s = \bigcup_{n < \omega} B_{s\concat n}$.
|
||||||
|
|
||||||
In particular
|
In particular
|
||||||
$A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$
|
$A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$
|
||||||
|
|
|
@ -183,7 +183,7 @@ i.e.}{}
|
||||||
Let $X$ be Polish and $C \subseteq X$ coanalytic.
|
Let $X$ be Polish and $C \subseteq X$ coanalytic.
|
||||||
Then $\phi\colon C \to \Ord$
|
Then $\phi\colon C \to \Ord$
|
||||||
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
|
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
|
||||||
provided that $\le^\ast$ and $<^\ast$ are coanalytic subsets of $X \times X$,
|
provided that $\le^\ast_\phi$ and $<^\ast_\phi$ are coanalytic subsets of $X \times X$,
|
||||||
where
|
where
|
||||||
$x \le^\ast_{\phi} y$
|
$x \le^\ast_{\phi} y$
|
||||||
iff
|
iff
|
||||||
|
|
|
@ -104,7 +104,7 @@
|
||||||
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
|
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
|
||||||
\]
|
\]
|
||||||
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
||||||
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
|
\footnote{Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{picture}.}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $\phi\colon R \to \Ord$
|
Let $\phi\colon R \to \Ord$
|
||||||
|
|
|
@ -55,7 +55,7 @@
|
||||||
then $\xi = \alpha$
|
then $\xi = \alpha$
|
||||||
and
|
and
|
||||||
\[
|
\[
|
||||||
E_\xi = E_\alpha = \bigcup_{\eta < \alpha}
|
E_\xi = E_\alpha = \bigcup_{\eta < \alpha} E_\eta
|
||||||
\]
|
\]
|
||||||
is a countable union of Borel sets by the previous case.
|
is a countable union of Borel sets by the previous case.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
@ -233,6 +233,7 @@ Recall:
|
||||||
correspond to metrics witnessing that the flow is isometric.
|
correspond to metrics witnessing that the flow is isometric.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
|
\label{prop:isomextdistal}
|
||||||
An isometric extension of a distal flow is distal.
|
An isometric extension of a distal flow is distal.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
@ -263,11 +264,12 @@ Recall:
|
||||||
% TODO THE inverse limit is A limit
|
% TODO THE inverse limit is A limit
|
||||||
of $\Sigma$ iff
|
of $\Sigma$ iff
|
||||||
\[
|
\[
|
||||||
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
\forall x_1 \neq x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
||||||
\]
|
\]
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
|
\label{prop:limitdistal}
|
||||||
A limit of distal flows is distal.
|
A limit of distal flows is distal.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
\lecture{16}{2023-12-08}{}
|
\lecture{16}{2023-12-08}{}
|
||||||
% TODO ANKI-MARKER
|
|
||||||
|
|
||||||
$X$ is always compact metrizable.
|
$X$ is always compact metrizable.
|
||||||
|
|
||||||
|
@ -18,16 +17,19 @@ $X$ is always compact metrizable.
|
||||||
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
|
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
|
||||||
% \end{example}
|
% \end{example}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
% TODO TODO TODO Think!
|
||||||
The action of $1$ determines $h$.
|
The action of $1$ determines $h$.
|
||||||
Consider
|
Consider
|
||||||
\[
|
\[
|
||||||
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{ continuous}\},
|
\{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
|
||||||
\]
|
\]
|
||||||
where the topology is the uniform convergence topology. % TODO REF EXERCISE
|
where the topology is the uniform convergence topology. % TODO REF EXERCISE
|
||||||
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||||
Since
|
Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
|
||||||
|
i.e.~
|
||||||
\[
|
\[
|
||||||
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon
|
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon,
|
||||||
|
% Here we use isometric
|
||||||
\]
|
\]
|
||||||
we have by the Arzel\`a-Ascoli-Theorem % TODO REF
|
we have by the Arzel\`a-Ascoli-Theorem % TODO REF
|
||||||
that $G$ is compact.
|
that $G$ is compact.
|
||||||
|
@ -126,8 +128,8 @@ $X$ is always compact metrizable.
|
||||||
Every quasi-isometric flow is distal.
|
Every quasi-isometric flow is distal.
|
||||||
\end{corollary}
|
\end{corollary}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
\todo{TODO}
|
The trivial flow is distal.
|
||||||
% The trivial flow is distal.
|
Apply \yaref{prop:isomextdistal} and \yaref{prop:limitdistal}.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{theorem}[Furstenberg]
|
\begin{theorem}[Furstenberg]
|
||||||
|
@ -138,7 +140,7 @@ By Zorn's lemma, this will follow from
|
||||||
\begin{theorem}[Furstenberg]
|
\begin{theorem}[Furstenberg]
|
||||||
\label{thm:l16:3}
|
\label{thm:l16:3}
|
||||||
Let $(X, T)$ be a minimal distal flow
|
Let $(X, T)$ be a minimal distal flow
|
||||||
and let $(Y, T)$ be a proper factor.
|
and let $(Y, T)$ be a proper factor.%
|
||||||
\footnote{i.e.~$(X,T)$ and $(Y,T)$ are not isomorphic}
|
\footnote{i.e.~$(X,T)$ and $(Y,T)$ are not isomorphic}
|
||||||
Then there is another factor $(Z,T)$ of $(X,T)$
|
Then there is another factor $(Z,T)$ of $(X,T)$
|
||||||
which is a proper isometric extension of $Y$.
|
which is a proper isometric extension of $Y$.
|
||||||
|
@ -199,7 +201,8 @@ The Hilbert cube $\bH = [0,1]^{\N}$
|
||||||
embeds all compact metric spaces.
|
embeds all compact metric spaces.
|
||||||
Thus we can consider $K(\bH)$,
|
Thus we can consider $K(\bH)$,
|
||||||
the space of compact subsets of $\bH$.
|
the space of compact subsets of $\bH$.
|
||||||
$K(\bH)$ is a Polish space.\todo{Exercise}
|
$K(\bH)$ is a Polish space.\footnote{cf.~\yaref{s9e2}, \yaref{s12e4}}
|
||||||
|
% TODO LEARN EXERCISES
|
||||||
Consider $K(\bH^2)$.
|
Consider $K(\bH^2)$.
|
||||||
A flow $\Z \acts X$ corresponds to the graph of
|
A flow $\Z \acts X$ corresponds to the graph of
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
|
|
@ -15,16 +15,16 @@ U_{\epsilon}(x,y) \coloneqq \{f \in X^X : d(x,f(y)) < \epsilon\}.
|
||||||
\]
|
\]
|
||||||
for all $x,y \in X$, $\epsilon > 0$.
|
for all $x,y \in X$, $\epsilon > 0$.
|
||||||
|
|
||||||
$X^{X}$ is a compact Hausdorff space.
|
$X^{X}$ is a compact Hausdorff space.\footnote{cf.~\href{https://en.wikipedia.org/wiki/Tychonoff's_theorem}{Tychonoff's theorem}}
|
||||||
\begin{remark}
|
\begin{remark}%
|
||||||
\todo{Copy from exercise sheet 10}
|
\footnote{cf.~\yaref{s11e1}}
|
||||||
Let $f_0 \in X^X$ be fixed.
|
Let $f_0 \in X^X$ be fixed.
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $X^X \ni f \mapsto f \circ f_0$
|
\item $X^X \ni f \mapsto f \circ f_0$
|
||||||
is continuous:
|
is continuous:
|
||||||
|
|
||||||
Consider $\{f : f \circ f_0 \in U_{\epsilon}(x,y)\}$.
|
Consider $\{f : f \circ f_0 \in U_{\epsilon}(x,y)\}$.
|
||||||
We have $ff_0 \in U_{\epsilon}(x,y)$
|
We have $f \circ f_0 \in U_{\epsilon}(x,y)$
|
||||||
iff $f \in U_\epsilon(x,f_0(y))$.
|
iff $f \in U_\epsilon(x,f_0(y))$.
|
||||||
\item Fix $x_0 \in X$.
|
\item Fix $x_0 \in X$.
|
||||||
Then $f \mapsto f(x_0)$ is continuous.
|
Then $f \mapsto f(x_0)$ is continuous.
|
||||||
|
@ -34,27 +34,35 @@ $X^{X}$ is a compact Hausdorff space.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $(X,T)$ be a flow.
|
\gist{%
|
||||||
Then the \vocab{Ellis semigroup}
|
Let $(X,T)$ be a flow.
|
||||||
is defined by
|
Then the \vocab{Ellis semigroup}
|
||||||
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
is defined by
|
||||||
i.e.~identify $t \in T$ with $x \mapsto tx$
|
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
||||||
and take the closure in $X^X$.
|
i.e.~identify $t \in T$ with $x \mapsto tx$
|
||||||
|
and take the closure in $X^X$.
|
||||||
|
}{%
|
||||||
|
The \vocab{Ellis semigroup} of a flow $(X,T)$
|
||||||
|
is $E(X,T) \coloneqq \overline{T} \subseteq X^X$.
|
||||||
|
}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
$E(X,T)$ is compact and Hausdorff,
|
$E(X,T)$ is compact and Hausdorff,
|
||||||
since $X^X$ has these properties.
|
since $X^X$ has these properties.
|
||||||
|
|
||||||
Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
\gist{
|
||||||
\begin{goal}
|
Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
|
\begin{goal}
|
||||||
We want to show that if $(X,T)$ is distal,
|
We want to show that if $(X,T)$ is distal,
|
||||||
then $E(X,T)$ is a group.
|
then $E(X,T)$ is a group.
|
||||||
\end{goal}
|
\end{goal}
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
$E(X,T)$ is a semigroup,
|
$E(X,T)$ is a semigroup,
|
||||||
i.e.~closed under composition.
|
i.e.~closed under composition.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{
|
||||||
Let $G \coloneqq E(X,T)$.
|
Let $G \coloneqq E(X,T)$.
|
||||||
Take $t \in T$. We want to show that $tG \subseteq G$,
|
Take $t \in T$. We want to show that $tG \subseteq G$,
|
||||||
i.e.~for all $h \in G$ we have $th \in G$.
|
i.e.~for all $h \in G$ we have $th \in G$.
|
||||||
|
@ -63,7 +71,8 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
since $t^{-1}$ is continuous
|
since $t^{-1}$ is continuous
|
||||||
and $G$ is compact.
|
and $G$ is compact.
|
||||||
|
|
||||||
Then $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
|
It is $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
|
||||||
|
|
||||||
So $G = \overline{T} \subseteq t^{-1}G$.
|
So $G = \overline{T} \subseteq t^{-1}G$.
|
||||||
Hence $tG \subseteq G$.
|
Hence $tG \subseteq G$.
|
||||||
|
|
||||||
|
@ -74,7 +83,7 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
\]
|
\]
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\begin{subproof}
|
||||||
\todo{Homework}
|
Cf.~\yaref{s11e1}
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
|
||||||
Let $g \in G$.
|
Let $g \in G$.
|
||||||
|
@ -87,17 +96,34 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
Since $G$ compact,
|
Since $G$ compact,
|
||||||
and $Tg \subseteq G$,
|
and $Tg \subseteq G$,
|
||||||
we have $ \overline{Tg} \subseteq G$.
|
we have $ \overline{Tg} \subseteq G$.
|
||||||
|
}{
|
||||||
|
$G \coloneqq E(X,T)$.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\forall t \in T. ~ tG \subseteq G$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $t^{-1}G$ is compact.
|
||||||
|
\item $T \subseteq t^{-1}G$,
|
||||||
|
\item $\leadsto G = \overline{T} \subseteq t^{-1}G$,
|
||||||
|
i.e.~$tG \subseteq G$.
|
||||||
|
\end{itemize}
|
||||||
|
\item $\forall g \in G.~\overline{T}g = \overline{Tg}$ (cts.~map from compact to Hausdorff)
|
||||||
|
\item $\forall g \in G.~Gg \subseteq G$ :
|
||||||
|
$Gg = \overline{T}g = \overline{Tg} \overset{G \text{ compact}, Tg \subseteq G}{\subseteq} G$.
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A \vocab{compact semigroup} $S$
|
A \vocab{compact semigroup} $S$
|
||||||
is a nonempty semigroup with a compact
|
is a nonempty semigroup\footnote{may not contain inverses or the identity}
|
||||||
Hausdorff topology,
|
with a compact Hausdorff topology,
|
||||||
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\gist{
|
||||||
\begin{example}
|
\begin{example}
|
||||||
The Ellis semigroup is a compact semigroup.
|
The Ellis semigroup is a compact semigroup.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{lemma}[Ellis–Numakura]
|
\begin{lemma}[Ellis–Numakura]
|
||||||
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
||||||
|
@ -106,6 +132,7 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
i.e.~$f$ such that $f^2 = f$.
|
i.e.~$f$ such that $f^2 = f$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{
|
||||||
Using Zorn's lemma, take a $\subseteq$-minimal
|
Using Zorn's lemma, take a $\subseteq$-minimal
|
||||||
compact subsemigroup $R$ of $S$
|
compact subsemigroup $R$ of $S$
|
||||||
and let $s \in R$.
|
and let $s \in R$.
|
||||||
|
@ -122,25 +149,39 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
Thus $P = R$ by minimality,
|
Thus $P = R$ by minimality,
|
||||||
so $s \in P$,
|
so $s \in P$,
|
||||||
i.e.~$s^2 = s$.
|
i.e.~$s^2 = s$.
|
||||||
|
}{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Take $R \subseteq S$ minimal compact subsemigroup (Zorn),
|
||||||
|
$s \in R$.
|
||||||
|
\item $Rs \subseteq R \implies Rs = R$.
|
||||||
|
\item $P \coloneqq \{x \in R : xs = s\}$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $P \neq \emptyset$, since $s \in Rs$
|
||||||
|
\item $P$ compact, since $P = \alpha^{-1}(s) \cap R$,
|
||||||
|
$\alpha: x \mapsto xs$ cts.
|
||||||
|
\item $P = R \implies s^2 = s$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}%
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
|
\gist{
|
||||||
since we already know that it has an identity,
|
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
|
||||||
in fact we have chosen $R = \{1\}$ in the proof.
|
since we already know that it has an identity.
|
||||||
But it is interesting for other semigroups.
|
%in fact we might have chosen $R = \{1\}$ in the proof.
|
||||||
|
But it is interesting for other semigroups.
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
\begin{theorem}[Ellis]
|
\begin{theorem}[Ellis]
|
||||||
$(X,T)$ is distal iff $E(X,T)$ is a group.
|
$(X,T)$ is distal iff $E(X,T)$ is a group.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
Let $G \coloneqq E(X,T)$ and let $d$ be a metric on $X$.
|
||||||
Let $G \coloneqq E(X,T)$.
|
\gist{
|
||||||
Let $d$ be a metric on $X$.
|
|
||||||
|
|
||||||
For all $g \in G$ we need to show that $x \mapsto gx$ is bijective.
|
For all $g \in G$ we need to show that $x \mapsto gx$ is bijective.
|
||||||
If we had $gx = gy$, then $d(gx,gy) = 0$.
|
If we had $gx = gy$, then $d(gx,gy) = 0$.
|
||||||
Then $\inf d(tx,ty) = 0$, but the flow is distal,
|
Then $\inf_{t \in T} d(tx,ty) = 0$, but the flow is distal,
|
||||||
hence $x = y$.
|
hence $x = y$.
|
||||||
|
|
||||||
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
|
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
|
||||||
|
@ -150,25 +191,46 @@ But it is interesting for other semigroups.
|
||||||
Since $f$ is injective, we get that $x = f(x)$,
|
Since $f$ is injective, we get that $x = f(x)$,
|
||||||
i.e.~$f = \id$.
|
i.e.~$f = \id$.
|
||||||
|
|
||||||
Take $g' \in G$ such that $f = g' \circ g$.%
|
Since $f \in Gg$, there exists $g' \in G$ such that $f = g' \circ g$.
|
||||||
%\footnote{This exists since $f \in Gg$.}
|
|
||||||
|
|
||||||
It is $g' = g'gg'$,
|
It is $g' = g'gg'$,
|
||||||
so $\forall x .~g'(x) = g'(g g'(x))$.
|
so $\forall x .~g'(x) = g'(g g'(x))$.
|
||||||
Hence $g'$ is bijective
|
Hence $g'$ is bijective
|
||||||
and $x = gg'(x)$,
|
and $x = gg'(x)$,
|
||||||
i.e.~$g g' = \id$.
|
i.e.~$g g' = \id$.
|
||||||
|
}{
|
||||||
|
\begin{itemize}
|
||||||
|
\item $x \mapsto gx$ injective for all $g \in G$:
|
||||||
|
\[gx = gy
|
||||||
|
\implies d(gx,gy) = 0
|
||||||
|
\implies \inf_{t \in T} d(tx, ty) = 0
|
||||||
|
\overset{\text{distal}}{\implies} x = y.
|
||||||
|
\]
|
||||||
|
\item Fix $g \in G$.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\Gamma \coloneqq Gg$ is a compact semigroup.
|
||||||
|
\item $\exists f\in \Gamma.~f^2 = f$ (\yaref{lem:ellisnumakura})
|
||||||
|
\item $f$ is injective, hence $f = \id$.
|
||||||
|
\item Take $g'$ such that $g'g = f$. $g'gg' = g' \implies gg' = \id$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
|
||||||
\todo{The other direction is left as an easy exercise.}
|
\gist{
|
||||||
|
On the other hand if $(x_0,x_1)$ is proximal,
|
||||||
|
then there exists $g \in G$ such that $gx_0 = gx_1$.%
|
||||||
|
\footnote{cf.~\yaref{s11e1} (e)}
|
||||||
|
It follows that an inverse to $g$ can not exist.
|
||||||
|
}{If $(x_0,x_1)$ is proximal, there is $g \in G$ with $gx_0 = gx_1$, i.e.~no inverse to $g$.}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
Let $(X,T)$ be a flow.
|
% Let $(X,T)$ be a flow.
|
||||||
Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
% Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
||||||
such that $(X_0, T)$ is minimal.
|
% such that $(X_0, T)$ is minimal.
|
||||||
In particular,
|
% In particular,
|
||||||
for $x \in X$ and $\overline{Tx} = Y$
|
% for $x \in X$ and $\overline{Tx} = Y$
|
||||||
we have that $(Y,T)$ is a flow.
|
% we have that $(Y,T)$ is a flow.
|
||||||
However if we pick $y \in Y$, $Ty$ might not be dense.
|
% However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
% TODO: question!
|
% TODO: question!
|
||||||
% TODO: think about this!
|
% TODO: think about this!
|
||||||
% We want to a minimal subflow in a nice way:
|
% We want to a minimal subflow in a nice way:
|
||||||
|
@ -181,6 +243,7 @@ However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $G = E(X,T)$.
|
Let $G = E(X,T)$.
|
||||||
|
\gist{
|
||||||
Note that for all $x \in X$,
|
Note that for all $x \in X$,
|
||||||
we have that $Gx \subseteq X$ is compact
|
we have that $Gx \subseteq X$ is compact
|
||||||
and invariant under the action of $G$.
|
and invariant under the action of $G$.
|
||||||
|
@ -188,17 +251,18 @@ However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
Since $G$ is a group, the orbits partition $X$.%
|
Since $G$ is a group, the orbits partition $X$.%
|
||||||
\footnote{Note that in general this does not hold for semigroups.}
|
\footnote{Note that in general this does not hold for semigroups.}
|
||||||
|
|
||||||
% Clearly the sets $Gx$ cover $X$. We want to show that they
|
We need to show that $(Gx, T)$ is minimal.
|
||||||
% partition $X$.
|
Suppose that $y \in Gx$, i.e.~$Gx = Gy$.
|
||||||
% It suffices to show that $y \in Gx \implies Gy = Gx$.
|
Since $g \mapsto gy$ is continuous,
|
||||||
|
we have $Gx = Gy = \overline{T}y = \overline{Ty}$,
|
||||||
% Take some $y \in Gx$.
|
so $Ty$ is dense in $Gx$.
|
||||||
% Recall that $\overline{Ty} = \overline{T} y = Gy$.
|
}{
|
||||||
% We have $\overline{Ty} \subseteq Gx$,
|
\begin{itemize}
|
||||||
% so $Gy \subseteq Gx$.
|
\item $G$ is a group, so the $G$-orbits partition $X$.
|
||||||
% Since $y = g_0 x \implies x = g_0^{-1}y$, we also have $x \in Gy$,
|
\item Let $y \in Gx$, then $Gx \overset{y \in Gx}{=} Gy \overset{\text{def}}{=} \overline{T}y \overset{g \mapsto gy \text{ cts.}}{=} \overline{Ty}$,
|
||||||
% hence $Gx \subseteq Gy$
|
i.e.~$(Gx,T)$ is minimal.
|
||||||
% TODO: WHY?
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{corollary}
|
\begin{corollary}
|
||||||
If $(X,T)$ is distal and minimal,
|
If $(X,T)$ is distal and minimal,
|
||||||
|
|
|
@ -3,14 +3,6 @@
|
||||||
|
|
||||||
The goal for this lecture is to give a very rough
|
The goal for this lecture is to give a very rough
|
||||||
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
|
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
|
||||||
% \begin{theorem}[Furstenberg]
|
|
||||||
% Let $(X, T)$ be a minimal distal flow
|
|
||||||
% and let $(Z,T)$ be a proper factor of $X$%
|
|
||||||
% \footnote{i.e.~$(X,T)$ and $(Z,T)$ are not isomorphic.}
|
|
||||||
% Then three is another factor $(Y,T)$ of $(X,T)$
|
|
||||||
% which is a proper isometric extension of $Z$.
|
|
||||||
% \end{theorem}
|
|
||||||
|
|
||||||
|
|
||||||
Let $(X,T)$ be a distal flow.
|
Let $(X,T)$ be a distal flow.
|
||||||
Then $G \coloneqq E(X,T)$ is a group.
|
Then $G \coloneqq E(X,T)$ is a group.
|
||||||
|
@ -26,7 +18,9 @@ F(x,x') \coloneqq \inf \{d(gx, gx') : g \in G\}.
|
||||||
\item $F(x,x') = F(x', x)$,
|
\item $F(x,x') = F(x', x)$,
|
||||||
\item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$.
|
\item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$.
|
||||||
\item $F(gx, gx') = F(x,x')$ since $G$ is a group.
|
\item $F(gx, gx') = F(x,x')$ since $G$ is a group.
|
||||||
\item $F$ is an upper semi-continuous function on $X^2$,
|
\item $F$ is an \vocab{upper semi-continuous}\footnote{%
|
||||||
|
Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/c/c0/Upper_semi.svg}{picture}.}
|
||||||
|
function on $X^2$,
|
||||||
i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$.
|
i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$.
|
||||||
|
|
||||||
This holds because $F$ is the infimum of continuous functions
|
This holds because $F$ is the infimum of continuous functions
|
||||||
|
@ -52,23 +46,28 @@ This will follow from the following lemma:
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:ftophelper}
|
\label{lem:ftophelper}
|
||||||
Let $F(x,x') < a$.
|
Let $F(x,x') < a$.
|
||||||
|
\gist{%
|
||||||
Then there exists $\epsilon > 0$ such that
|
Then there exists $\epsilon > 0$ such that
|
||||||
whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$.
|
whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$.
|
||||||
|
}{Then $\exists \epsilon > 0.~\forall x''.~F(x',x'') < \epsilon \implies F(x,x'') < a$.}
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{refproof}{def:ftop}
|
\begin{refproof}{def:ftop}
|
||||||
|
\gist{%
|
||||||
We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$,
|
We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$,
|
||||||
then this intersection is the union
|
then this intersection is the union
|
||||||
of sets of this kind.
|
of sets of this kind.
|
||||||
Let $x' \in U_a(x_1)$.
|
}{}
|
||||||
|
Let $x' \in U_a(x_1) \cap U_b(x_2)$.
|
||||||
Then by \yaref{lem:ftophelper},
|
Then by \yaref{lem:ftophelper},
|
||||||
there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$.
|
there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$.
|
||||||
Similarly there exists $\epsilon_2 > 0$
|
Similarly there exists $\epsilon_2 > 0$\gist{
|
||||||
such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$.
|
such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$.}{.}
|
||||||
So for $\epsilon \le \epsilon_1, \epsilon_2$,
|
So for $\epsilon \le \epsilon_1, \epsilon_2$,
|
||||||
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
|
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
\begin{refproof}{lem:ftophelper}%
|
\begin{refproof}{lem:ftophelper}%
|
||||||
\footnote{This was not covered in class.}
|
\notexaminable{\footnote{This was not covered in class.}
|
||||||
|
% TODO: maybe learn?
|
||||||
|
|
||||||
Let $T = \bigcup_n T_n$,% TODO Why does this exist?
|
Let $T = \bigcup_n T_n$,% TODO Why does this exist?
|
||||||
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
|
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
|
||||||
|
@ -123,6 +122,7 @@ This will follow from the following lemma:
|
||||||
i.e.~$d(t_1t_0x, t_1t_0x') < b$
|
i.e.~$d(t_1t_0x, t_1t_0x') < b$
|
||||||
and therefore
|
and therefore
|
||||||
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
|
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
|
||||||
|
}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
Now assume $Z = \{\star\}$.
|
Now assume $Z = \{\star\}$.
|
||||||
|
@ -168,8 +168,7 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
||||||
\item One can show that $H$ is a topological group and $(M,H)$
|
\item One can show that $H$ is a topological group and $(M,H)$
|
||||||
is a flow.\footnote{This is non-trivial.}
|
is a flow.\footnote{This is non-trivial.}
|
||||||
\item Since $H$ is compact,
|
\item Since $H$ is compact,
|
||||||
$(M,H)$ is equicontinuous, %\todo{We didn't define this}
|
$(M,H)$ is equicontinuous, i.e.~it is isometric.
|
||||||
i.e.~it is isometric.
|
|
||||||
In particular, $(M,T)$ is isometric.
|
In particular, $(M,T)$ is isometric.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial:
|
\item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial:
|
||||||
|
@ -213,9 +212,9 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
||||||
Let $X$ be a metric space
|
Let $X$ be a metric space
|
||||||
and $\Gamma\colon X \to \R$ be upper semicontinuous.
|
and $\Gamma\colon X \to \R$ be upper semicontinuous.
|
||||||
Then the set of continuity points of $\Gamma$ is comeager.
|
Then the set of continuity points of $\Gamma$ is comeager.
|
||||||
\todo{Missing figure: upper semicontinuous function}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\notexaminable{
|
||||||
Take $x$ such that $\Gamma$ is not continuous at $x$.
|
Take $x$ such that $\Gamma$ is not continuous at $x$.
|
||||||
Then there is an $\epsilon > 0$
|
Then there is an $\epsilon > 0$
|
||||||
and $x_n \to x$ such that
|
and $x_n \to x$ such that
|
||||||
|
@ -227,10 +226,11 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
||||||
\]
|
\]
|
||||||
$X \setminus B_q = \{a \in X : \Gamma(a) < q\}$
|
$X \setminus B_q = \{a \in X : \Gamma(a) < q\}$
|
||||||
is open, i.e.~$B_q$ is closed.
|
is open, i.e.~$B_q$ is closed.
|
||||||
Note that $x \in F_q \coloneqq B_q \setminus B_q^\circ$
|
Note that $x \in F_q \coloneqq B_q \setminus \inter(B_q)$
|
||||||
and $B_q \setminus B_q^\circ$ is nwd
|
and $B_q \setminus \inter(B_q)$ is nwd
|
||||||
as it is closed and has empty interior,
|
as it is closed and has empty interior,
|
||||||
so $\bigcup_{q \in \Q} F_q$ is meager.
|
so $\bigcup_{q \in \Q} F_q$ is meager.
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
\subsection{The order of a flow}
|
\subsection{The Order of a Flow}
|
||||||
\lecture{19}{2023-12-19}{Orders of flows}
|
\lecture{19}{2023-12-19}{Orders of Flows}
|
||||||
|
|
||||||
See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}.
|
See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}.
|
||||||
|
|
||||||
|
@ -71,7 +71,6 @@ equicontinuity coincide.
|
||||||
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
|
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
|
||||||
$\beta < \alpha \le \Theta$
|
$\beta < \alpha \le \Theta$
|
||||||
are isometric, then the inverse limit $Y$ is isometric.%
|
are isometric, then the inverse limit $Y$ is isometric.%
|
||||||
\todo{Why does an inverse limit exist?}
|
|
||||||
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d
|
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d
|
||||||
\[\begin{tikzcd}
|
\[\begin{tikzcd}
|
||||||
Y & {Y_\alpha} & X \\
|
Y & {Y_\alpha} & X \\
|
||||||
|
@ -193,8 +192,8 @@ More generally we can show:
|
||||||
on the fibers of $Y$ over $Z_2$
|
on the fibers of $Y$ over $Z_2$
|
||||||
and invariant under $T$.
|
and invariant under $T$.
|
||||||
|
|
||||||
$\sigma$ is a metric, since if
|
$\sigma$ is a metric,
|
||||||
if $\pi_2(y) = \pi_2(y')$ and $\sigma(y,y') = 0$,
|
since if $\pi_2(y) = \pi_2(y')$ and $\sigma(y,y') = 0$,
|
||||||
then $\pi_1(y) = \pi_1(y')$ or $y = y'$.
|
then $\pi_1(y) = \pi_1(y')$ or $y = y'$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -221,6 +220,7 @@ More generally we can show:
|
||||||
For this, we show that for all $\xi < \eta$,
|
For this, we show that for all $\xi < \eta$,
|
||||||
$(X_\xi', T)$ is a factor of $(X_\xi ,T)$
|
$(X_\xi', T)$ is a factor of $(X_\xi ,T)$
|
||||||
using transfinite induction.
|
using transfinite induction.
|
||||||
|
|
||||||
% https://q.uiver.app/#q=WzAsMTEsWzAsMSwiWCJdLFswLDIsIlhfXFxldGEiXSxbMCwwLCJYJ197XFxldGEnfSJdLFsxLDIsIlxcZG90cyJdLFsxLDAsIlxcZG90cyJdLFs0LDAsIlhfMSciXSxbNCwyLCJYXzEiXSxbMywwLCJYJ18yIl0sWzMsMiwiWF8yIl0sWzIsMCwiWCdfMyJdLFsyLDIsIlhfMyJdLFsyLDAsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMSwiIiwyLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTAsOF0sWzgsNl0sWzcsNV0sWzksN10sWzEwLDksIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs4LDcsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs2LDUsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFsxLDEwLCJcXHBpXzMiLDIseyJjdXJ2ZSI6MX1dLFsxLDgsIlxccGlfMiIsMix7ImN1cnZlIjozfV0sWzEsNiwiXFxwaV8xIiwyLHsiY3VydmUiOjV9XSxbMiw5LCJcXHBpJ18zIiwwLHsiY3VydmUiOi0xfV0sWzIsNywiXFxwaSdfMiIsMCx7ImN1cnZlIjotM31dLFsyLDUsIlxccGknXzEiLDAseyJjdXJ2ZSI6LTV9XV0=
|
% https://q.uiver.app/#q=WzAsMTEsWzAsMSwiWCJdLFswLDIsIlhfXFxldGEiXSxbMCwwLCJYJ197XFxldGEnfSJdLFsxLDIsIlxcZG90cyJdLFsxLDAsIlxcZG90cyJdLFs0LDAsIlhfMSciXSxbNCwyLCJYXzEiXSxbMywwLCJYJ18yIl0sWzMsMiwiWF8yIl0sWzIsMCwiWCdfMyJdLFsyLDIsIlhfMyJdLFsyLDAsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMSwiIiwyLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTAsOF0sWzgsNl0sWzcsNV0sWzksN10sWzEwLDksIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs4LDcsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs2LDUsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFsxLDEwLCJcXHBpXzMiLDIseyJjdXJ2ZSI6MX1dLFsxLDgsIlxccGlfMiIsMix7ImN1cnZlIjozfV0sWzEsNiwiXFxwaV8xIiwyLHsiY3VydmUiOjV9XSxbMiw5LCJcXHBpJ18zIiwwLHsiY3VydmUiOi0xfV0sWzIsNywiXFxwaSdfMiIsMCx7ImN1cnZlIjotM31dLFsyLDUsIlxccGknXzEiLDAseyJjdXJ2ZSI6LTV9XV0=
|
||||||
\[\begin{tikzcd}
|
\[\begin{tikzcd}
|
||||||
{X'_{\eta'}} & \dots & {X'_3} & {X'_2} & {X_1'} \\
|
{X'_{\eta'}} & \dots & {X'_3} & {X'_2} & {X_1'} \\
|
||||||
|
@ -242,7 +242,8 @@ More generally we can show:
|
||||||
\arrow["{\pi'_2}", curve={height=-18pt}, from=1-1, to=1-4]
|
\arrow["{\pi'_2}", curve={height=-18pt}, from=1-1, to=1-4]
|
||||||
\arrow["{\pi'_1}", curve={height=-30pt}, from=1-1, to=1-5]
|
\arrow["{\pi'_1}", curve={height=-30pt}, from=1-1, to=1-5]
|
||||||
\end{tikzcd}\]
|
\end{tikzcd}\]
|
||||||
% TODO: induction start?
|
|
||||||
|
We'll only show the successor step:
|
||||||
|
|
||||||
Suppose we have
|
Suppose we have
|
||||||
$(X'_\xi, T) = \theta((X_\xi, T)$.
|
$(X'_\xi, T) = \theta((X_\xi, T)$.
|
||||||
|
@ -251,18 +252,21 @@ More generally we can show:
|
||||||
\[Y \coloneqq \{(\pi_\xi(x), \pi'_{\xi+1}(x)) \in X_\xi \times X'_{\xi+ 1}: x \in X\}.\]
|
\[Y \coloneqq \{(\pi_\xi(x), \pi'_{\xi+1}(x)) \in X_\xi \times X'_{\xi+ 1}: x \in X\}.\]
|
||||||
Then
|
Then
|
||||||
|
|
||||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIoWF97XFx4aSsxfSxUKSJdLFsyLDAsIihZLFQpIl0sWzMsMSwiKFgnX3tcXHhpKzF9LFQpIl0sWzIsMiwiKFgnX1xceGksVCkiXSxbMSwxLCIoWF9cXHhpLFQpIl0sWzAsNCwiXFx0ZXh0e21heC5+aXNvfSIsMV0sWzQsMywiXFx0aGV0YSIsMV0sWzIsMywie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsNCwie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsMl0sWzAsMSwiIiwwLHsiY3VydmUiOi0xLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
|
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIoWF97XFx4aSsxfSxUKSJdLFsyLDAsIihZLFQpIl0sWzMsMSwiKFgnX3tcXHhpKzF9LFQpIl0sWzIsMiwiKFgnX1xceGksVCkiXSxbMSwxLCIoWF9cXHhpLFQpIl0sWzAsNCwiXFx0ZXh0e21heC5+aXNvfSIsMV0sWzQsMywiXFx0aGV0YSIsMV0sWzIsMywie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsNCwie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsMl0sWzAsMSwiIiwwLHsiY3VydmUiOi0xLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwyLCJcXHBpJyIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs3LDMsIlxcdGhldGEnIiwwLHsibGV2ZWwiOjEsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDgsIlxccGkiLDIseyJsZXZlbCI6MSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoibm9uZSJ9LCJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d
|
||||||
\[\begin{tikzcd}
|
\begin{tikzcd}
|
||||||
{(X_{\xi+1},T)} && {(Y,T)} \\
|
{(X_{\xi+1},T)} && {(Y,T)} \\
|
||||||
& {(X_\xi,T)} && {(X'_{\xi+1},T)} \\
|
& {(X_\xi,T)} && {(X'_{\xi+1},T)} \\
|
||||||
&& {(X'_\xi,T)}
|
&& {(X'_\xi,T)}
|
||||||
\arrow["{\text{max.~iso}}"{description}, from=1-1, to=2-2]
|
\arrow["{\text{max.~iso}}"{description}, from=1-1, to=2-2]
|
||||||
\arrow["\theta"{description}, from=2-2, to=3-3]
|
\arrow["\theta"{description}, from=2-2, to=3-3]
|
||||||
\arrow["{{\color{orange}\text{iso}}}"{description}, from=2-4, to=3-3]
|
\arrow[""{name=0, anchor=center, inner sep=0}, "{{\color{orange}\text{iso}}}"{description}, from=2-4, to=3-3]
|
||||||
\arrow["{{\color{orange}\text{iso}}}"{description}, from=1-3, to=2-2]
|
\arrow[""{name=1, anchor=center, inner sep=0}, "{{\color{orange}\text{iso}}}"{description}, from=1-3, to=2-2]
|
||||||
\arrow[from=1-3, to=2-4]
|
\arrow[from=1-3, to=2-4]
|
||||||
\arrow[curve={height=-6pt}, dashed, from=1-1, to=1-3]
|
\arrow[curve={height=-6pt}, dashed, from=1-1, to=1-3]
|
||||||
\end{tikzcd}\]
|
\arrow["{\pi'}", draw=none, from=1-3, to=2-4]
|
||||||
|
\arrow["{\theta'}", draw=none, from=0, to=3-3]
|
||||||
|
\arrow["\pi"', draw=none, from=1-3, to=1]
|
||||||
|
\end{tikzcd}
|
||||||
|
|
||||||
The diagram commutes, since all maps are the induced maps.
|
The diagram commutes, since all maps are the induced maps.
|
||||||
By definition of $Y$ is clear that $\pi$ and $\pi'$ separate points in $Y$.
|
By definition of $Y$ is clear that $\pi$ and $\pi'$ separate points in $Y$.
|
||||||
|
@ -275,6 +279,9 @@ More generally we can show:
|
||||||
In particular,
|
In particular,
|
||||||
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
||||||
\label{ex:19:inftorus}
|
\label{ex:19:inftorus}
|
||||||
Let $X$ be the infinite torus
|
Let $X$ be the infinite torus
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
\lecture{20}{2024-01-09}{The Infinite Torus}
|
\lecture{20}{2024-01-09}{The Infinite Torus}
|
||||||
|
|
||||||
|
\gist{
|
||||||
\begin{example}
|
\begin{example}
|
||||||
\footnote{This is the same as \yaref{ex:19:inftorus},
|
\footnote{This is the same as \yaref{ex:19:inftorus},
|
||||||
but with new notation.}
|
but with new notation.}
|
||||||
|
@ -14,9 +15,10 @@
|
||||||
\begin{remark}+
|
\begin{remark}+
|
||||||
Note that we can identify $S^1$ with a subset of $\C$ (and use multiplication)
|
Note that we can identify $S^1$ with a subset of $\C$ (and use multiplication)
|
||||||
or with $\faktor{\R}{\Z}$ (and use addition).
|
or with $\faktor{\R}{\Z}$ (and use addition).
|
||||||
In the lecture both notations were used.% to make things extra confusing.
|
In the lecture both notations were used. % to make things extra confusing.
|
||||||
Here I'll try to only use multiplicative notation.
|
Here I'll try to only use multiplicative notation.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
}{}
|
||||||
We will be studying projections to the first $d$ coordinates,
|
We will be studying projections to the first $d$ coordinates,
|
||||||
i.e.
|
i.e.
|
||||||
\[
|
\[
|
||||||
|
|
|
@ -78,7 +78,7 @@
|
||||||
is Borel for all $\alpha < \omega_1$.
|
is Borel for all $\alpha < \omega_1$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\todo{This was already stated as \yaref{thm:beleznayforeman} in lecture 16
|
\todo{This was already stated as \yaref{thm:beleznay-foreman} in lecture 16
|
||||||
and should not have two numbers.}
|
and should not have two numbers.}
|
||||||
|
|
||||||
A few words on the proof:
|
A few words on the proof:
|
||||||
|
@ -86,7 +86,7 @@ Let $\mathbb{K} = S^1$
|
||||||
and $I$ a countable linear order.
|
and $I$ a countable linear order.
|
||||||
Let $\mathbb{K}^I$ be the product of $|I|$ many $\mathbb{K}$,
|
Let $\mathbb{K}^I$ be the product of $|I|$ many $\mathbb{K}$,
|
||||||
$\mathbb{K}^{<i} \coloneqq \mathbb{K}^{\{j : j < i\}}$
|
$\mathbb{K}^{<i} \coloneqq \mathbb{K}^{\{j : j < i\}}$
|
||||||
and $\pi_{i}\colon \mathbb{K}^{I} \to \mathbb{K}^{<i}$\todo{maybe call it $\pi_{<i}$?}
|
and $\pi_{i}\colon \mathbb{K}^{I} \to \mathbb{K}^{<i}$% \todo{maybe call it $\pi_{<i}$?}
|
||||||
the projection.
|
the projection.
|
||||||
|
|
||||||
Let $\mathbb{K}_I \coloneqq \prod_{i \in I} C(\mathbb{K}^{<i}, \mathbb{K})$.
|
Let $\mathbb{K}_I \coloneqq \prod_{i \in I} C(\mathbb{K}^{<i}, \mathbb{K})$.
|
||||||
|
@ -145,7 +145,9 @@ For this we define
|
||||||
This is the same as for iterated skew shifts.
|
This is the same as for iterated skew shifts.
|
||||||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||||
\item Minimality:
|
\item Minimality:%
|
||||||
|
\gist{%
|
||||||
|
\footnote{This is not relevant for the exam.}
|
||||||
|
|
||||||
Let $\langle E_n : n < \omega \rangle$
|
Let $\langle E_n : n < \omega \rangle$
|
||||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||||
|
@ -163,8 +165,12 @@ For this we define
|
||||||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||||
Since the flow is distal, it suffices to show
|
Since the flow is distal, it suffices to show
|
||||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||||
|
}{ Not relevant for the exam.}
|
||||||
|
|
||||||
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
\item The order of the flow is $\eta$:%
|
||||||
|
\gist{%
|
||||||
|
\footnote{This is not relevant for the exam.}
|
||||||
|
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||||
Consider the flows we get from $(f_i)_{i < j}$
|
Consider the flows we get from $(f_i)_{i < j}$
|
||||||
resp.~$(f_i)_{i \le j}$
|
resp.~$(f_i)_{i \le j}$
|
||||||
denoted by $X_{<j}$ resp.~$X_{\le j}$.
|
denoted by $X_{<j}$ resp.~$X_{\le j}$.
|
||||||
|
@ -186,7 +192,7 @@ For this we define
|
||||||
&&\}
|
&&\}
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Beleznay and Foreman show that this is open and dense.%
|
Beleznay and Foreman show that this is open and dense.%
|
||||||
\footnote{This is not relevant for the exam.}
|
|
||||||
% TODO similarities to the lemma used today
|
% TODO similarities to the lemma used today
|
||||||
|
}{ Not relevant for the exam.}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
|
@ -1,5 +1,9 @@
|
||||||
\lecture{23}{2024-01-19}{More sketches of ideas of Beleznay and Foreman}
|
\lecture{23}{2024-01-19}{More sketches of ideas of Beleznay and Foreman}
|
||||||
|
|
||||||
|
% TODO read notes
|
||||||
|
% TODO def. almost distal
|
||||||
|
% From Lecture 23, you need to know the proposition on page 7 (with the proof), but I won't ask you for other proofs from that lecture
|
||||||
|
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
Let $X$ be a Polish space and $\cP$ a property of elements of $X$,
|
Let $X$ be a Polish space and $\cP$ a property of elements of $X$,
|
||||||
then we say that $x_0 \in X$ is \vocab{generic}
|
then we say that $x_0 \in X$ is \vocab{generic}
|
||||||
|
@ -24,6 +28,7 @@ Let $I$ be a linear order
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{proof}[sketch]
|
\begin{proof}[sketch]
|
||||||
|
\notexaminable{%
|
||||||
Consider $\WO(\N) \subset \LO(\N)$.
|
Consider $\WO(\N) \subset \LO(\N)$.
|
||||||
We know that this is $\Pi_1^1$-complete. % TODO ref
|
We know that this is $\Pi_1^1$-complete. % TODO ref
|
||||||
|
|
||||||
|
@ -65,6 +70,7 @@ Let $I$ be a linear order
|
||||||
$T^{\alpha}_n \subseteq W^{\alpha}_n$,
|
$T^{\alpha}_n \subseteq W^{\alpha}_n$,
|
||||||
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
|
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
|
||||||
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
|
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal
|
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal
|
||||||
|
@ -102,9 +108,11 @@ Let $I$ be a linear order
|
||||||
The order %TODO (Furstenberg rank)
|
The order %TODO (Furstenberg rank)
|
||||||
is a $\Pi^1_1$-rank.
|
is a $\Pi^1_1$-rank.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
For the proof one shows that $\le^\ast$ and $<^\ast$
|
\begin{proof}[sketch]
|
||||||
are $\Pi^1_1$, where
|
\notexaminable{
|
||||||
\begin{enumerate}[(1)]
|
For the proof one shows that $\le^\ast$ and $<^\ast$
|
||||||
|
are $\Pi^1_1$, where
|
||||||
|
\begin{enumerate}[(1)]
|
||||||
\item $p_1 \le^\ast p_2$ iff $p_1$ codes
|
\item $p_1 \le^\ast p_2$ iff $p_1$ codes
|
||||||
a distal minimal flow and if
|
a distal minimal flow and if
|
||||||
$p_2$ also codes a distal minimal flow,
|
$p_2$ also codes a distal minimal flow,
|
||||||
|
@ -113,17 +121,18 @@ are $\Pi^1_1$, where
|
||||||
a distal minimal flow and if
|
a distal minimal flow and if
|
||||||
$p_2$ also codes a distal minimal flow,
|
$p_2$ also codes a distal minimal flow,
|
||||||
then $\mathop{order}(p_1) < \mathop{order}(p_2)$.
|
then $\mathop{order}(p_1) < \mathop{order}(p_2)$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
One uses that $(Y_{i+1}, T)$ is a maximal
|
|
||||||
isometric extension of $(Y_i,T)$
|
|
||||||
ind $(X,T)$
|
|
||||||
iff for all $x_1,x_2$ from a fixed countable dense set
|
|
||||||
in $X$,
|
|
||||||
for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$,
|
|
||||||
there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$,
|
|
||||||
$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
|
|
||||||
|
|
||||||
|
One uses that $(Y_{i+1}, T)$ is a maximal
|
||||||
|
isometric extension of $(Y_i,T)$
|
||||||
|
ind $(X,T)$
|
||||||
|
iff for all $x_1,x_2$ from a fixed countable dense set
|
||||||
|
in $X$,
|
||||||
|
for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$,
|
||||||
|
there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$,
|
||||||
|
$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
|
||||||
|
}
|
||||||
|
\end{proof}
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
The order of a minimal distal flow on a separable,
|
The order of a minimal distal flow on a separable,
|
||||||
metric space is countable.
|
metric space is countable.
|
||||||
|
@ -169,4 +178,3 @@ $F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
|
||||||
Then $\alpha \mapsto U_\alpha$ is an injection.
|
Then $\alpha \mapsto U_\alpha$ is an injection.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -17,17 +17,19 @@
|
||||||
we have $X \in \cU \lor \N \setminus X \in \cU$.
|
we have $X \in \cU \lor \N \setminus X \in \cU$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\gist{
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item If $X \cup Y \in \cU$ then $X \in \cU \lor Y$ or $Y \in \cU$:
|
\item If $X \cup Y \in \cU$ then $X \in \cU$ or $Y \in \cU$:
|
||||||
Consider $((\N \setminus X) \cap (\N \setminus Y) = \N \setminus (X \cup Y)$.
|
Consider $((\N \setminus X) \cap (\N \setminus Y) = \N \setminus (X \cup Y)$.
|
||||||
\item Every filter can be extended to an ultrafilter.
|
\item Every filter can be extended to an ultrafilter.
|
||||||
(Zorn's lemma)
|
(Zorn's lemma)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
}{}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial}
|
An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial}
|
||||||
if it is of the form
|
iff it is of the form
|
||||||
\[
|
\[
|
||||||
\hat{n} = \{X \subseteq \N : n \in X\}.
|
\hat{n} = \{X \subseteq \N : n \in X\}.
|
||||||
\]
|
\]
|
||||||
|
@ -46,9 +48,9 @@
|
||||||
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
||||||
|
|
||||||
\begin{enumerate}[(1)]
|
\begin{enumerate}[(1)]
|
||||||
\item $(\cU n) (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$.
|
\item $(\cU n) ~ (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$.
|
||||||
\item $(\cU n) (\phi(n) \lor \psi(m)) \iff (\cU n) \phi(n) \lor (\cU n) \psi(n)$.
|
\item $(\cU n) ~ (\phi(n) \lor \psi(m)) \iff (\cU n) ~ \phi(n) \lor (\cU n) ~ \psi(n)$.
|
||||||
\item $(\cU n) \lnot \phi(n) \iff \lnot (\cU n) \phi(n)$.
|
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{observe}
|
\end{observe}
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
@ -59,7 +61,7 @@
|
||||||
there is a unique $x \in X$,
|
there is a unique $x \in X$,
|
||||||
such that
|
such that
|
||||||
\[
|
\[
|
||||||
(\cU n) (x_n \in G)
|
(\cU n)~(x_n \in G)
|
||||||
\]
|
\]
|
||||||
for every neighbourhood%
|
for every neighbourhood%
|
||||||
\footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.}
|
\footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.}
|
||||||
|
|
|
@ -108,13 +108,13 @@ This requires the use of the axiom of choice.
|
||||||
\item Let $B = \{x \in \R | (F_i)_x \text{ is meager}\}$.
|
\item Let $B = \{x \in \R | (F_i)_x \text{ is meager}\}$.
|
||||||
Then $B$ is comeager in $\R$ and $|B| = \fc$.
|
Then $B$ is comeager in $\R$ and $|B| = \fc$.
|
||||||
|
|
||||||
We have $|B| = \fc$, since $B$ contains a comeager
|
We have $|B| = \fc$:
|
||||||
$G_\delta$ set, $B'$:
|
$B$ contains a comeager $G_\delta$ set, say $B'$.
|
||||||
$B'$ is Polish,
|
$B'$ is Polish,
|
||||||
hence $B' = P \cup C$
|
hence $B' = P \cup C$
|
||||||
for $P$ perfect and $C$ countable,
|
for $P$ perfect and $C$ countable,
|
||||||
and $|P| \in \{\fc, 0\}$.
|
and $|P| \in \{\fc, 0\}$.
|
||||||
But $B'$ can't contain isolated point.
|
But $B'$ can't contain an isolated point.
|
||||||
\item We use $B$ to find a suitable point $a_i$:
|
\item We use $B$ to find a suitable point $a_i$:
|
||||||
|
|
||||||
To ensure that (i) holds, it suffices to chose
|
To ensure that (i) holds, it suffices to chose
|
||||||
|
|
|
@ -57,7 +57,7 @@ form a $\sigma$-algebra).
|
||||||
|
|
||||||
Let $(U_n)_{n < \omega}$ be a countable base of $(X,\tau)$.
|
Let $(U_n)_{n < \omega}$ be a countable base of $(X,\tau)$.
|
||||||
Each $U_n$ is open, hence Borel,
|
Each $U_n$ is open, hence Borel,
|
||||||
so by a theorem from the lecture$^{\text{tm}}$
|
so by \hyperref[thm:clopenize]{a theorem from the lecture™}
|
||||||
there exists a Polish topology $\tau_n$
|
there exists a Polish topology $\tau_n$
|
||||||
such that $U_n$ is clopen, preserving Borel sets.
|
such that $U_n$ is clopen, preserving Borel sets.
|
||||||
|
|
||||||
|
|
|
@ -116,7 +116,7 @@ amounts to a finite number of conditions on the preimage.
|
||||||
\]
|
\]
|
||||||
is closed as an intersection of clopen sets.
|
is closed as an intersection of clopen sets.
|
||||||
|
|
||||||
Clearly $\pr_{LO(\N)}(\cF)$ is the complement
|
Clearly $\proj_{LO(\N)}(\cF)$ is the complement
|
||||||
of $WO(\N)$, hence $WO(\N)$ is coanalytic.
|
of $WO(\N)$, hence $WO(\N)$ is coanalytic.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\nr 4
|
\nr 4
|
||||||
|
|
|
@ -59,6 +59,8 @@
|
||||||
and since $B$ is Hausdorff, compact subsets of $B$ are closed.
|
and since $B$ is Hausdorff, compact subsets of $B$ are closed.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
|
||||||
|
\nr 1
|
||||||
|
|
||||||
Let $(X,T)$ be a flow and $G = E(X,T)$ its Ellis semigroup.
|
Let $(X,T)$ be a flow and $G = E(X,T)$ its Ellis semigroup.
|
||||||
Let $d$ be a compatible metric on $X$.
|
Let $d$ be a compatible metric on $X$.
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
|
@ -100,7 +102,7 @@ Let $d$ be a compatible metric on $X$.
|
||||||
Consider $\ev_x \colon X^X \to X$.
|
Consider $\ev_x \colon X^X \to X$.
|
||||||
$X^X$ is compact and $X$ is Hausdorff.
|
$X^X$ is compact and $X$ is Hausdorff.
|
||||||
Hence we can apply
|
Hence we can apply
|
||||||
\label{fact:t12:2}.
|
\yaref{fact:t12:2}.
|
||||||
|
|
||||||
\item Let $x_0 \neq x_1 \in X$.
|
\item Let $x_0 \neq x_1 \in X$.
|
||||||
Then $(x_0,x_1)$ is a proximal pair iff $d(gx_0,gx_1) = 0$
|
Then $(x_0,x_1)$ is a proximal pair iff $d(gx_0,gx_1) = 0$
|
||||||
|
|
|
@ -17,18 +17,12 @@ Then $t_n y \to (0) = t_n x$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% TODO this is redundant
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{refproof}{fact:isometriciffequicontinuous}.
|
\begin{refproof}{fact:isometriciffequicontinuous}.
|
||||||
|
|
||||||
$d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$
|
$d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$
|
||||||
induce the same topology.
|
induce the same topology.
|
||||||
Let $\tau, \tau'$ be the corresponding topologies.
|
Let $\tau, \tau'$ be the corresponding topologies.
|
||||||
|
|
||||||
$\tau \subseteq \tau'$ easy,
|
$\tau \subseteq \tau'$ easy,
|
||||||
$\tau' \subseteq \tau'$ : use equicontinuity.
|
$\tau' \subseteq \tau'$ : use equicontinuity.
|
||||||
|
|
||||||
|
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
|
@ -156,5 +156,6 @@
|
||||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
||||||
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
|
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
|
||||||
|
\newcommand\notexaminable[1]{\gist{\footnote{Not relevant for the exam.}#1}{Not relevant for the exam.}}
|
||||||
|
|
||||||
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
||||||
|
|
Loading…
Reference in a new issue