This commit is contained in:
parent
6c5eda59e4
commit
3df55b6516
4 changed files with 2 additions and 5 deletions
|
@ -91,7 +91,6 @@
|
||||||
because $\tilde{f_U}$ is continuous.
|
because $\tilde{f_U}$ is continuous.
|
||||||
It is closed}{} in $X \times \R$ \gist{because
|
It is closed}{} in $X \times \R$ \gist{because
|
||||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
|
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
|
||||||
\todo{Make this precise}
|
|
||||||
|
|
||||||
Therefore we identified $U$ with a closed subspace of
|
Therefore we identified $U$ with a closed subspace of
|
||||||
the Polish space $(X \times \R, d_1)$.
|
the Polish space $(X \times \R, d_1)$.
|
||||||
|
|
|
@ -96,7 +96,7 @@
|
||||||
Polish space and $\cC = 2^\omega$ the Cantor space,
|
Polish space and $\cC = 2^\omega$ the Cantor space,
|
||||||
then they are Borel isomorphic.
|
then they are Borel isomorphic.
|
||||||
There is $2^\omega \hookrightarrow X$ Borel
|
There is $2^\omega \hookrightarrow X$ Borel
|
||||||
(continuous wrt.~to the topology of $X$)
|
(continuous wrt.~the topology of $X$)
|
||||||
On the other hand
|
On the other hand
|
||||||
\[
|
\[
|
||||||
X \hookrightarrow\cN \overset{\text{continuous embedding\footnotemark}}{\hookrightarrow}\cC
|
X \hookrightarrow\cN \overset{\text{continuous embedding\footnotemark}}{\hookrightarrow}\cC
|
||||||
|
|
|
@ -119,5 +119,3 @@
|
||||||
Then $f(B) = U_{(x_0,\ldots,x_{n-1})}$ is open,
|
Then $f(B) = U_{(x_0,\ldots,x_{n-1})}$ is open,
|
||||||
hence $f$ is open.
|
hence $f$ is open.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -95,7 +95,7 @@ for some $B_i \in \cB(Y_i)$.
|
||||||
Then $\bigcap A_i$ is the image of $D$
|
Then $\bigcap A_i$ is the image of $D$
|
||||||
under $Z \xrightarrow{(y_n) \mapsto f_0(y_0)} X$.
|
under $Z \xrightarrow{(y_n) \mapsto f_0(y_0)} X$.
|
||||||
|
|
||||||
\paragraph{Other solution}
|
\emph{Other solution:}
|
||||||
|
|
||||||
Let $F_n \subseteq X \times \cN$ be closed,
|
Let $F_n \subseteq X \times \cN$ be closed,
|
||||||
and $C \subseteq X \times \cN^{\N}$ defined by
|
and $C \subseteq X \times \cN^{\N}$ defined by
|
||||||
|
|
Loading…
Reference in a new issue