This commit is contained in:
parent
1cc501fbe3
commit
37f81861df
4 changed files with 8 additions and 10 deletions
|
@ -254,15 +254,14 @@ Recall:
|
||||||
Hence $x_1 = x_2$ $\lightning$.
|
Hence $x_1 = x_2$ $\lightning$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
% TODO ANKI-MARKER
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $\Sigma = \{(X_i, T) : i \in I\} $
|
Let $\Sigma = \{(X_i, T) : i \in I\} $
|
||||||
be a collection of factors of $(X,T)$.
|
be a collection of factors of $(X,T)$.
|
||||||
Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map.
|
Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map.
|
||||||
Then $(X, T)$ is a \vocab{limit}%
|
Then $(X, T)$ is a \vocab{limit}%
|
||||||
\footnote{This is not a limit in the category theory sense and not uniquely determined.}
|
\footnote{This is not a limit in the category theory sense and not uniquely determined.}
|
||||||
of $\Sigma$
|
% TODO THE inverse limit is A limit
|
||||||
iff
|
of $\Sigma$ iff
|
||||||
\[
|
\[
|
||||||
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
||||||
\]
|
\]
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
\lecture{16}{2023-12-08}{}
|
\lecture{16}{2023-12-08}{}
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
$X$ is always compact metrizable.
|
$X$ is always compact metrizable.
|
||||||
|
|
||||||
|
|
|
@ -23,7 +23,7 @@
|
||||||
such that for all $t \in T$, $d(ta,tb) > \epsilon$.
|
such that for all $t \in T$, $d(ta,tb) > \epsilon$.
|
||||||
|
|
||||||
|
|
||||||
\item % TODO (not too hard)
|
\item \todo{TODO}% TODO (not too hard)
|
||||||
% (b)
|
% (b)
|
||||||
% Let $(X,T)$ be distal with a dense orbit,
|
% Let $(X,T)$ be distal with a dense orbit,
|
||||||
% then it is distal minimal.
|
% then it is distal minimal.
|
||||||
|
|
|
@ -1,12 +1,11 @@
|
||||||
\tutorial{15}{2024-01-31}{Additions}
|
|
||||||
|
|
||||||
\subsection{Additional Tutorial}
|
\subsection{Additional Tutorial}
|
||||||
|
\tutorial{15}{2024-01-31}{Additions}
|
||||||
|
|
||||||
The following is not relevant for the exam,
|
The following is not relevant for the exam,
|
||||||
but gives a more general picture.
|
but gives a more general picture.
|
||||||
|
|
||||||
Let $ X$ be a topological space.
|
Let $X$ be a topological space
|
||||||
Let $\cF$ be a filter on $ X$.
|
and let $\cF$ be a filter on $ X$.
|
||||||
|
|
||||||
$x \in X$ is a limit point of $\cF$ iff the neighbourhood filter $\cN_x$,
|
$x \in X$ is a limit point of $\cF$ iff the neighbourhood filter $\cN_x$,
|
||||||
all sets containing an open neighbourhood of $x$,
|
all sets containing an open neighbourhood of $x$,
|
||||||
|
@ -83,5 +82,4 @@ Consider the basic open set
|
||||||
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
|
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
|
% TODO
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue