From 37f81861dfadd0610b784f40395943a20c30345a Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Fri, 2 Feb 2024 01:59:54 +0100 Subject: [PATCH] some small changes --- inputs/lecture_15.tex | 5 ++--- inputs/lecture_16.tex | 1 + inputs/tutorial_14.tex | 2 +- inputs/tutorial_15.tex | 10 ++++------ 4 files changed, 8 insertions(+), 10 deletions(-) diff --git a/inputs/lecture_15.tex b/inputs/lecture_15.tex index 4550520..53092a8 100644 --- a/inputs/lecture_15.tex +++ b/inputs/lecture_15.tex @@ -254,15 +254,14 @@ Recall: Hence $x_1 = x_2$ $\lightning$. \end{proof} -% TODO ANKI-MARKER \begin{definition} Let $\Sigma = \{(X_i, T) : i \in I\} $ be a collection of factors of $(X,T)$. Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map. Then $(X, T)$ is a \vocab{limit}% \footnote{This is not a limit in the category theory sense and not uniquely determined.} - of $\Sigma$ - iff + % TODO THE inverse limit is A limit + of $\Sigma$ iff \[ \forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2). \] diff --git a/inputs/lecture_16.tex b/inputs/lecture_16.tex index adf914f..c0a5161 100644 --- a/inputs/lecture_16.tex +++ b/inputs/lecture_16.tex @@ -1,4 +1,5 @@ \lecture{16}{2023-12-08}{} +% TODO ANKI-MARKER $X$ is always compact metrizable. diff --git a/inputs/tutorial_14.tex b/inputs/tutorial_14.tex index f4f9f41..77c2478 100644 --- a/inputs/tutorial_14.tex +++ b/inputs/tutorial_14.tex @@ -23,7 +23,7 @@ such that for all $t \in T$, $d(ta,tb) > \epsilon$. - \item % TODO (not too hard) + \item \todo{TODO}% TODO (not too hard) % (b) % Let $(X,T)$ be distal with a dense orbit, % then it is distal minimal. diff --git a/inputs/tutorial_15.tex b/inputs/tutorial_15.tex index 9bb251a..2da6ab1 100644 --- a/inputs/tutorial_15.tex +++ b/inputs/tutorial_15.tex @@ -1,12 +1,11 @@ -\tutorial{15}{2024-01-31}{Additions} - \subsection{Additional Tutorial} +\tutorial{15}{2024-01-31}{Additions} The following is not relevant for the exam, but gives a more general picture. -Let $ X$ be a topological space. -Let $\cF$ be a filter on $ X$. +Let $X$ be a topological space +and let $\cF$ be a filter on $ X$. $x \in X$ is a limit point of $\cF$ iff the neighbourhood filter $\cN_x$, all sets containing an open neighbourhood of $x$, @@ -83,5 +82,4 @@ Consider the basic open set \{\cF \in \beta\N : \cF \ni f^{-1}(V)\}. \] - - +% TODO