email about exam (2024-01-22)
Some checks failed
Build latex and deploy / checkout (push) Failing after 17m36s
Some checks failed
Build latex and deploy / checkout (push) Failing after 17m36s
This commit is contained in:
parent
6670dfbf6f
commit
24aca6746f
1 changed files with 28 additions and 22 deletions
|
@ -1,5 +1,9 @@
|
|||
\lecture{23}{2024-01-19}{More sketches of ideas of Beleznay and Foreman}
|
||||
|
||||
% TODO read notes
|
||||
% TODO def. almost distal
|
||||
% From Lecture 23, you need to know the proposition on page 7 (with the proof), but I won't ask you for other proofs from that lecture
|
||||
|
||||
\begin{notation}
|
||||
Let $X$ be a Polish space and $\cP$ a property of elements of $X$,
|
||||
then we say that $x_0 \in X$ is \vocab{generic}
|
||||
|
@ -104,28 +108,31 @@ Let $I$ be a linear order
|
|||
The order %TODO (Furstenberg rank)
|
||||
is a $\Pi^1_1$-rank.
|
||||
\end{theorem}
|
||||
For the proof one shows that $\le^\ast$ and $<^\ast$
|
||||
are $\Pi^1_1$, where
|
||||
\begin{enumerate}[(1)]
|
||||
\item $p_1 \le^\ast p_2$ iff $p_1$ codes
|
||||
a distal minimal flow and if
|
||||
$p_2$ also codes a distal minimal flow,
|
||||
then $\mathop{order}(p_1) \le \mathop{order}(p_2)$.
|
||||
\item $p_1 <^\ast p_2$ iff $p_1$ codes
|
||||
a distal minimal flow and if
|
||||
$p_2$ also codes a distal minimal flow,
|
||||
then $\mathop{order}(p_1) < \mathop{order}(p_2)$.
|
||||
\end{enumerate}
|
||||
|
||||
One uses that $(Y_{i+1}, T)$ is a maximal
|
||||
isometric extension of $(Y_i,T)$
|
||||
ind $(X,T)$
|
||||
iff for all $x_1,x_2$ from a fixed countable dense set
|
||||
in $X$,
|
||||
for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$,
|
||||
there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$,
|
||||
$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
|
||||
\begin{proof}[sketch]
|
||||
\notexaminable{
|
||||
For the proof one shows that $\le^\ast$ and $<^\ast$
|
||||
are $\Pi^1_1$, where
|
||||
\begin{enumerate}[(1)]
|
||||
\item $p_1 \le^\ast p_2$ iff $p_1$ codes
|
||||
a distal minimal flow and if
|
||||
$p_2$ also codes a distal minimal flow,
|
||||
then $\mathop{order}(p_1) \le \mathop{order}(p_2)$.
|
||||
\item $p_1 <^\ast p_2$ iff $p_1$ codes
|
||||
a distal minimal flow and if
|
||||
$p_2$ also codes a distal minimal flow,
|
||||
then $\mathop{order}(p_1) < \mathop{order}(p_2)$.
|
||||
\end{enumerate}
|
||||
|
||||
One uses that $(Y_{i+1}, T)$ is a maximal
|
||||
isometric extension of $(Y_i,T)$
|
||||
ind $(X,T)$
|
||||
iff for all $x_1,x_2$ from a fixed countable dense set
|
||||
in $X$,
|
||||
for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$,
|
||||
there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$,
|
||||
$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
|
||||
}
|
||||
\end{proof}
|
||||
\begin{proposition}
|
||||
The order of a minimal distal flow on a separable,
|
||||
metric space is countable.
|
||||
|
@ -171,4 +178,3 @@ $F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
|
|||
Then $\alpha \mapsto U_\alpha$ is an injection.
|
||||
\end{proof}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue