From 24aca6746f5fb5f0f5bdf6f1ed7ccc92b90cdf97 Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Sun, 4 Feb 2024 00:46:31 +0100 Subject: [PATCH] email about exam (2024-01-22) --- inputs/lecture_23.tex | 50 ++++++++++++++++++++++++------------------- 1 file changed, 28 insertions(+), 22 deletions(-) diff --git a/inputs/lecture_23.tex b/inputs/lecture_23.tex index c26f5b4..aedf7f5 100644 --- a/inputs/lecture_23.tex +++ b/inputs/lecture_23.tex @@ -1,5 +1,9 @@ \lecture{23}{2024-01-19}{More sketches of ideas of Beleznay and Foreman} +% TODO read notes +% TODO def. almost distal +% From Lecture 23, you need to know the proposition on page 7 (with the proof), but I won't ask you for other proofs from that lecture + \begin{notation} Let $X$ be a Polish space and $\cP$ a property of elements of $X$, then we say that $x_0 \in X$ is \vocab{generic} @@ -104,28 +108,31 @@ Let $I$ be a linear order The order %TODO (Furstenberg rank) is a $\Pi^1_1$-rank. \end{theorem} -For the proof one shows that $\le^\ast$ and $<^\ast$ -are $\Pi^1_1$, where -\begin{enumerate}[(1)] - \item $p_1 \le^\ast p_2$ iff $p_1$ codes - a distal minimal flow and if - $p_2$ also codes a distal minimal flow, - then $\mathop{order}(p_1) \le \mathop{order}(p_2)$. - \item $p_1 <^\ast p_2$ iff $p_1$ codes - a distal minimal flow and if - $p_2$ also codes a distal minimal flow, - then $\mathop{order}(p_1) < \mathop{order}(p_2)$. -\end{enumerate} - -One uses that $(Y_{i+1}, T)$ is a maximal -isometric extension of $(Y_i,T)$ -ind $(X,T)$ -iff for all $x_1,x_2$ from a fixed countable dense set -in $X$, -for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$, -there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$, -$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$. +\begin{proof}[sketch] + \notexaminable{ + For the proof one shows that $\le^\ast$ and $<^\ast$ + are $\Pi^1_1$, where + \begin{enumerate}[(1)] + \item $p_1 \le^\ast p_2$ iff $p_1$ codes + a distal minimal flow and if + $p_2$ also codes a distal minimal flow, + then $\mathop{order}(p_1) \le \mathop{order}(p_2)$. + \item $p_1 <^\ast p_2$ iff $p_1$ codes + a distal minimal flow and if + $p_2$ also codes a distal minimal flow, + then $\mathop{order}(p_1) < \mathop{order}(p_2)$. + \end{enumerate} + One uses that $(Y_{i+1}, T)$ is a maximal + isometric extension of $(Y_i,T)$ + ind $(X,T)$ + iff for all $x_1,x_2$ from a fixed countable dense set + in $X$, + for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$, + there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$, + $F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$. + } +\end{proof} \begin{proposition} The order of a minimal distal flow on a separable, metric space is countable. @@ -171,4 +178,3 @@ $F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$. Then $\alpha \mapsto U_\alpha$ is an injection. \end{proof} -