Merge branch 'main' of https://git.abstractnonsen.se/josia-notes/w23-logic-3
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m1s
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m1s
This commit is contained in:
commit
206b61941e
2 changed files with 12 additions and 12 deletions
|
@ -58,7 +58,7 @@
|
|||
\end{proof}
|
||||
|
||||
\subsection{Parametrizations}
|
||||
\todo{choose better title}
|
||||
%\todo{choose better title}
|
||||
|
||||
|
||||
Let $\Gamma$ denote a collection of sets in some space.
|
||||
|
@ -109,9 +109,9 @@ where $X$ is a metrizable, usually second countable space.
|
|||
put $(y,x) \in \cU$ iff
|
||||
$x \in \bigcup \{V_n : y_n = 1\}$.
|
||||
$\cU$ is open.
|
||||
Let $V = \bigcup \{V_n : V_n \subseteq V\}$.
|
||||
Pick $y \in 2^\omega$
|
||||
and let $y_n = 1$ iff $V_n \subseteq V$.
|
||||
For any $V \overset{\text{open}}{\subseteq} X$,
|
||||
define $y \in 2^\omega$
|
||||
by $y_n = 1$ iff $V_n \subseteq V$.
|
||||
Then $\cU_y = V$.
|
||||
|
||||
|
||||
|
@ -125,7 +125,7 @@ where $X$ is a metrizable, usually second countable space.
|
|||
Recall that $\eta_1 \le \eta_2 \implies \Pi^0_{\eta_1}(X) \subseteq \Pi^0_{\eta_2}(X)$.
|
||||
|
||||
Note that if $A = \bigcup_n A_n$, with $A_n \in \Pi^0_{\eta_n}(X)$
|
||||
some $\eta_n < \xi$,
|
||||
for some $\eta_n < \xi$,
|
||||
we also have
|
||||
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
||||
|
||||
|
@ -146,7 +146,7 @@ where $X$ is a metrizable, usually second countable space.
|
|||
Since $2^{\omega}$ embeds
|
||||
into any uncountable polish space $Y$
|
||||
such that the image is closed,
|
||||
we can $2^{\omega}$ by $Y$
|
||||
we can replace $2^{\omega}$ by $Y$
|
||||
in the statement of the theorem.%
|
||||
\footnote{By definition of the subspace topology
|
||||
and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.}
|
||||
|
|
|
@ -10,19 +10,18 @@ Let $x = (0)$ and $y = (\delta_{0,i})_{i \in \Z}$.
|
|||
Let $t_n \to \infty$.
|
||||
Then $t_n y \to (0) = t_n x$.
|
||||
|
||||
The skew shift flow is distal:
|
||||
This is tedious but probably not too hard.
|
||||
|
||||
The skew shift flow is not equicontinuous:
|
||||
% The skew shift flow is distal:
|
||||
% This is tedious but probably not too hard.
|
||||
%
|
||||
% The skew shift flow is not equicontinuous:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Sheet 11}
|
||||
|
||||
We did \yaref{fact:isometriciffequicontinuous}.
|
||||
\begin{refproof}{fact:isometriciffequicontinuous}.
|
||||
|
||||
$d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$
|
||||
induce the same topology.
|
||||
|
@ -32,3 +31,4 @@ $\tau \subseteq \tau'$ easy,
|
|||
$\tau' \subseteq \tau'$ : use equicontinuity.
|
||||
|
||||
|
||||
\end{refproof}
|
||||
|
|
Loading…
Reference in a new issue