parent
5dc9e52fc5
commit
56f36dd553
1 changed files with 6 additions and 6 deletions
|
@ -58,7 +58,7 @@
|
|||
\end{proof}
|
||||
|
||||
\subsection{Parametrizations}
|
||||
\todo{choose better title}
|
||||
%\todo{choose better title}
|
||||
|
||||
|
||||
Let $\Gamma$ denote a collection of sets in some space.
|
||||
|
@ -109,9 +109,9 @@ where $X$ is a metrizable, usually second countable space.
|
|||
put $(y,x) \in \cU$ iff
|
||||
$x \in \bigcup \{V_n : y_n = 1\}$.
|
||||
$\cU$ is open.
|
||||
Let $V = \bigcup \{V_n : V_n \subseteq V\}$.
|
||||
Pick $y \in 2^\omega$
|
||||
and let $y_n = 1$ iff $V_n \subseteq V$.
|
||||
For any $V \overset{\text{open}}{\subseteq} X$,
|
||||
define $y \in 2^\omega$
|
||||
by $y_n = 1$ iff $V_n \subseteq V$.
|
||||
Then $\cU_y = V$.
|
||||
|
||||
|
||||
|
@ -125,7 +125,7 @@ where $X$ is a metrizable, usually second countable space.
|
|||
Recall that $\eta_1 \le \eta_2 \implies \Pi^0_{\eta_1}(X) \subseteq \Pi^0_{\eta_2}(X)$.
|
||||
|
||||
Note that if $A = \bigcup_n A_n$, with $A_n \in \Pi^0_{\eta_n}(X)$
|
||||
some $\eta_n < \xi$,
|
||||
for some $\eta_n < \xi$,
|
||||
we also have
|
||||
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
||||
|
||||
|
@ -146,7 +146,7 @@ where $X$ is a metrizable, usually second countable space.
|
|||
Since $2^{\omega}$ embeds
|
||||
into any uncountable polish space $Y$
|
||||
such that the image is closed,
|
||||
we can $2^{\omega}$ by $Y$
|
||||
we can replace $2^{\omega}$ by $Y$
|
||||
in the statement of the theorem.%
|
||||
\footnote{By definition of the subspace topology
|
||||
and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.}
|
||||
|
|
Loading…
Reference in a new issue