Merge branch 'main' of https://git.abstractnonsen.se/josia-notes/w23-logic-3
Some checks failed
Build latex and deploy / checkout (push) Failing after 16m1s

This commit is contained in:
Josia Pietsch 2024-01-18 17:17:33 +01:00
commit 206b61941e
Signed by: josia
GPG key ID: E70B571D66986A2D
2 changed files with 12 additions and 12 deletions

View file

@ -58,7 +58,7 @@
\end{proof}
\subsection{Parametrizations}
\todo{choose better title}
%\todo{choose better title}
Let $\Gamma$ denote a collection of sets in some space.
@ -109,9 +109,9 @@ where $X$ is a metrizable, usually second countable space.
put $(y,x) \in \cU$ iff
$x \in \bigcup \{V_n : y_n = 1\}$.
$\cU$ is open.
Let $V = \bigcup \{V_n : V_n \subseteq V\}$.
Pick $y \in 2^\omega$
and let $y_n = 1$ iff $V_n \subseteq V$.
For any $V \overset{\text{open}}{\subseteq} X$,
define $y \in 2^\omega$
by $y_n = 1$ iff $V_n \subseteq V$.
Then $\cU_y = V$.
@ -125,7 +125,7 @@ where $X$ is a metrizable, usually second countable space.
Recall that $\eta_1 \le \eta_2 \implies \Pi^0_{\eta_1}(X) \subseteq \Pi^0_{\eta_2}(X)$.
Note that if $A = \bigcup_n A_n$, with $A_n \in \Pi^0_{\eta_n}(X)$
some $\eta_n < \xi$,
for some $\eta_n < \xi$,
we also have
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
@ -146,7 +146,7 @@ where $X$ is a metrizable, usually second countable space.
Since $2^{\omega}$ embeds
into any uncountable polish space $Y$
such that the image is closed,
we can $2^{\omega}$ by $Y$
we can replace $2^{\omega}$ by $Y$
in the statement of the theorem.%
\footnote{By definition of the subspace topology
and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.}

View file

@ -10,19 +10,18 @@ Let $x = (0)$ and $y = (\delta_{0,i})_{i \in \Z}$.
Let $t_n \to \infty$.
Then $t_n y \to (0) = t_n x$.
The skew shift flow is distal:
This is tedious but probably not too hard.
The skew shift flow is not equicontinuous:
% The skew shift flow is distal:
% This is tedious but probably not too hard.
%
% The skew shift flow is not equicontinuous:
\subsection{Sheet 11}
We did \yaref{fact:isometriciffequicontinuous}.
\begin{refproof}{fact:isometriciffequicontinuous}.
$d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$
induce the same topology.
@ -32,3 +31,4 @@ $\tau \subseteq \tau'$ easy,
$\tau' \subseteq \tau'$ : use equicontinuity.
\end{refproof}