exercise 1.4b
This commit is contained in:
parent
c3948b12ec
commit
0fb9ea8ffb
1 changed files with 25 additions and 1 deletions
|
@ -229,4 +229,28 @@ Clearly $d_u$ is a metric.
|
|||
\begin{claim}
|
||||
There exists a countable dense subset.
|
||||
\end{claim}
|
||||
\todo{handwritten solution}
|
||||
\begin{subproof}
|
||||
Fix a metric $d_X$ on $X$ defining its topology.
|
||||
Let
|
||||
\[
|
||||
C_{m,n} \coloneqq \{f \in \cC(X,Y) : \forall x,y \in X.~\left( d_X(x,y) < \frac{1}{m+1} \implies d(f(x), f(y)) <\frac{1}{n+1}\right) \}.
|
||||
\]
|
||||
|
||||
Choose $X_m \subseteq X$ finite with $X \subseteq \bigcup_{x \in X_m} B_{\frac{1}{m+1}}(x)$.
|
||||
Let $D_{m,n} \subseteq C_{m,n}$ be countable,
|
||||
such that for every $f \in C_{m,n}$ and every $\eta > 0$,
|
||||
there is $g \in D_{m,n}$ with $d(f(y), g(y)) < \frac{\eta}{3}$
|
||||
for each $y \in X_m$.
|
||||
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
|
||||
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
|
||||
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
||||
since $f$ is uniformly continuous.
|
||||
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
|
||||
We have $d_u(f,g) \le \eta$,
|
||||
since for every $x \in X$, we find $y \in X_m$ with $d_X(x,y) < \frac{1}{m+1}$,
|
||||
hence
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
d_Y(f(x), g(x)) &\le& d_Y(f(x), f(y)) + d_Y(f(y), g(y)) + d_Y(g(y), g(x))\\
|
||||
&\le& \frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1} \le \eta.
|
||||
\end{IEEEeqnarray*}
|
||||
\end{subproof}
|
||||
|
|
Loading…
Reference in a new issue