diff --git a/inputs/tutorial_02.tex b/inputs/tutorial_02.tex index 3916370..b039cf5 100644 --- a/inputs/tutorial_02.tex +++ b/inputs/tutorial_02.tex @@ -229,4 +229,28 @@ Clearly $d_u$ is a metric. \begin{claim} There exists a countable dense subset. \end{claim} -\todo{handwritten solution} +\begin{subproof} + Fix a metric $d_X$ on $X$ defining its topology. + Let + \[ + C_{m,n} \coloneqq \{f \in \cC(X,Y) : \forall x,y \in X.~\left( d_X(x,y) < \frac{1}{m+1} \implies d(f(x), f(y)) <\frac{1}{n+1}\right) \}. + \] + + Choose $X_m \subseteq X$ finite with $X \subseteq \bigcup_{x \in X_m} B_{\frac{1}{m+1}}(x)$. + Let $D_{m,n} \subseteq C_{m,n}$ be countable, + such that for every $f \in C_{m,n}$ and every $\eta > 0$, + there is $g \in D_{m,n}$ with $d(f(y), g(y)) < \frac{\eta}{3}$ + for each $y \in X_m$. + Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$: + Indeed if $f \in \cC(X,Y)$ and $\eta > 0$, + we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$, + since $f$ is uniformly continuous. + Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$. + We have $d_u(f,g) \le \eta$, + since for every $x \in X$, we find $y \in X_m$ with $d_X(x,y) < \frac{1}{m+1}$, + hence + \begin{IEEEeqnarray*}{rCl} + d_Y(f(x), g(x)) &\le& d_Y(f(x), f(y)) + d_Y(f(y), g(y)) + d_Y(g(y), g(x))\\ + &\le& \frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1} \le \eta. + \end{IEEEeqnarray*} +\end{subproof}