w23-logic-3/inputs/lecture_15.tex

190 lines
6.2 KiB
TeX
Raw Normal View History

2023-12-05 17:14:51 +01:00
\lecture{15}{2023-12-05}{}
2023-12-08 01:39:20 +01:00
\begin{theorem}[The Boundedness Theorem]
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
Let $X$ be Polish, $C \subseteq X$ coanalytic,
$\phi\colon C \to \omega_1$ a coanalytic rank on $C$,
$A \subseteq C$ analytic, i.e.~$A \in \Sigma^1_1(X)$.
Then $\sup \{\phi(x) : x \in A\} < \omega_1$.
Moreover for all $\xi < \omega_1$,
\[
D_\xi \coloneqq \{x \in C : \phi(x) < \xi\}
\]
and
\[
E_\xi \coloneqq \{x \in C : \phi(x) \le \xi\}
\]
are Borel subsets of $X$.
\end{theorem}
\begin{proof}
% Let
% \begin{IEEEeqnarray*}{rCl}
% x \prec y&:\iff& x,y \in A \land \phi(x) < \phi(y)\\
% &\iff& x,y \in A \land y \not\le_\phi^\ast x.
% \end{IEEEeqnarray*}
% Since $A$ is analytic,
% this relation is analytic and wellfounded on $X$.
% By \yaref{thm:kunenmartin}
% we get $\rho(\prec) < \omega_1$.
% Thus $\sup \{\phi(x) : x \in A\} < \omega_1$.
%
% Since $D_\xi = \bigcup_{\eta < \xi} E_\xi$,
% it suffices to check $E_\xi \in \Sigma_1^1(X)$.
% If $\alpha = \sup \{\phi(x) : x \in C\}$,
% we have $E_\xi = E_\alpha$ for all $\alpha < \xi < \omega_1$.
\todo{TODO: Copy from official notes}
\end{proof}
2023-12-08 02:02:59 +01:00
\pagebreak
2023-12-08 01:39:20 +01:00
\section{Abstract Topological Dynamics}
2023-12-08 02:02:59 +01:00
Recall:
\begin{definition}+
Let $X$ be a set.
A \vocab{group action} of a group $G$ on $X$
is a function
$\alpha\colon G \times X \to X$
such that
\begin{itemize}
\item $\forall x \in X.~\alpha(1_G,x) = x$,
\item $\forall g,h \in G, x \in X.~\alpha(gh,x) = \alpha(g,\alpha(h,x))$.
\end{itemize}
Often we will abbreviate $\alpha(g,x)$ as $g\cdot x$.
\end{definition}
\begin{remark}+
Group actions of a group $G$ on a set $X$
correspond to group-homomorphisms
$G \to \Sym(X)$.
Indeed for a group action $\alpha\colon G \times X \to X$
consider
\begin{IEEEeqnarray*}{rCl}
G&\longrightarrow & \Sym(X) \\
g&\longmapsto & (x \mapsto g \cdot x).
\end{IEEEeqnarray*}
\end{remark}
2023-12-08 01:39:20 +01:00
\begin{definition}
Let $T$ be a topological group\footnote{usually $T = \Z$ with the discrete topology}
and let $X$ be a compact metrizable space.
A \vocab{flow} $(X, T)$, sometimes denoted $T \acts X$
is a continuous action
\begin{IEEEeqnarray*}{rCl}
T \times X&\longrightarrow & X \\
(t,x) &\longmapsto & tx.
\end{IEEEeqnarray*}
A flow is \vocab{minimal} iff every orbit is dense.
$(Y,T)$ is a \vocab{subflow} of $(X,T)$ if $Y \subseteq X$
and $Y$ is invariant under $T$,
i.e.~$\forall t \in T,y \in Y.~ty \in Y$.
A flow $(X,T)$ is \vocab{isometric}
iff there is a metric $d$ on $X$ such that
for all $t \in T$ the map
\begin{IEEEeqnarray*}{rCl}
a_t\colon X &\longrightarrow & X \\
x &\longmapsto & tx
\end{IEEEeqnarray*}
is an \vocab{isometry},
i.e.~$\forall t \in T.~\forall x,y \in X.~d(a_t(x),a_t(y)) = d(x,y)$.
If $(X,T)$ is a flow, then a pair $(x,y)$, $x \neq y$
is \vocab{proximal} iff
\[
\exists z \in X.~\exists (t_n)_{n < } \in T^{\omega}.~t_n x \xrightarrow{n \to \infty} z \land t_n y \xrightarrow{n \to \infty} z.
\]
A flow is \vocab{distal} iff
it has no proximal pair.
\end{definition}
\begin{remark}
Note that a flow is minimal iff it has no proper subflows.
\end{remark}
% \begin{example}
% Recall that $S_1 = \{z \in \C : |z| = 1\}$.
% Let $X = S_1$, $T = S_1$
% $(\alpha,\beta) \mapsto \alpha + \beta$ is isometric.
% % TODO: In the official notes it says \alpha + \beta, but this is no group action.
% % Maybe \alpha * \beta ?
% \end{example}
\begin{definition}
Let $X,Y$ be compact metric spaces
and $\pi\colon (X,T) \to (Y,T)$ a factor map.
Then $(X,T)$ is an \vocab{isometric extension}
2023-12-08 01:42:08 +01:00
of $(Y,T)$ if there is a real valued $\rho$
defined on $\{(x_1,x_2) \in X^2 : \pi(x_1) = \pi(x_2)\}$
2023-12-08 01:39:20 +01:00
such that
\begin{enumerate}[(a)]
\item $\rho$ is continuous.
\item For each $y \in Y$, $\rho$ is a metric on the fibre
$X_y \coloneqq \{x \in X: \pi(x) = y\}$.
\item $\forall t \in T.~\rho(tx_1,tx_2) = \rho(x_1,x_2)$.
\item $\forall y,y' \in Y.~$
the metric spaces $(X_y, \rho)$ and $(X_{y'}, \rho)$
are isometric.
\end{enumerate}
\end{definition}
\begin{remark}
A flow is isometric iff it is an isometric extension
of the trivial flow,
i.e.~the flow acting on a singleton.
% TODO THINK ABOUT THIS!
\end{remark}
\begin{proposition}
An isometric extension of a distal flow is distal.
\end{proposition}
\begin{proof}
Let $\pi\colon X\to Y$ be an isometric extension.
Towards a contradiction,
suppose that $x_1,x_2 \in X$ are proximal.
Take $z \in X$ and $(g_n) \in T^{\omega}$
such that $g_n x_1 \to z$ and $g_n x_2 \to z$.
Then $g_n \pi(x_1) \to \pi(z)$
and $g_n \pi(x_2) \to \pi(z)$,
so by distality of $Y$
we have $\pi(x_1) = \pi(x_{2})$.
Then $\rho(g_n x_1, g_n x_2)$
is defined and equal to $\rho(x_1,x_2)$.
By the continuity of $\rho$,
we get $\rho(g_n x_1, g_n x_2) \to \rho(z,z) = 0$.
Therefore $\rho(x_1,x_2) = 0$.
Hence $x_1 = x_2$ $\lightning$.
\end{proof}
\begin{definition}
Let $\Sigma = \{(X_i, T) : i \in I\} $
be a collection of factors of $(X,T)$. % TODO State precise definition of a factor
Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map.
Then $(X, T)$ is the \vocab{limit} of $\Sigma$
iff
\[
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
\]
% TODO think about abstract nonsense
\end{definition}
\begin{proposition}
A limit of distal flows is distal.
\end{proposition}
\begin{proof}
Let $(X,T)$ be a limit of $\Sigma = \{(X_i, T) : i \in I\}$.
Suppose that each $(X_i, T)$ is distal.
If $(X,T)$ was not distal,
then there were $x_1, x_2, z \in X$
and a sequence $(g_n)$ in $T$
with $g_n x_1 \to z$ and $g_n x_2 \to z$.
Take $i \in I$ such that $\pi_i(x_1) \neq \pi_i(x_2)$.
But then $g_n \pi_i(x_1) \to \pi_i(z)$
and $g_n \pi_i(x_2) \to \pi_i(z)$,
which is a contradiction since $(X_i, T)$ is distal.
\end{proof}