2023-12-05 17:14:51 +01:00
|
|
|
\lecture{15}{2023-12-05}{}
|
|
|
|
|
2023-12-08 01:39:20 +01:00
|
|
|
\begin{theorem}[The Boundedness Theorem]
|
|
|
|
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
|
|
|
|
|
|
|
|
Let $X$ be Polish, $C \subseteq X$ coanalytic,
|
|
|
|
$\phi\colon C \to \omega_1$ a coanalytic rank on $C$,
|
|
|
|
$A \subseteq C$ analytic, i.e.~$A \in \Sigma^1_1(X)$.
|
|
|
|
Then $\sup \{\phi(x) : x \in A\} < \omega_1$.
|
|
|
|
|
|
|
|
Moreover for all $\xi < \omega_1$,
|
|
|
|
\[
|
|
|
|
D_\xi \coloneqq \{x \in C : \phi(x) < \xi\}
|
|
|
|
\]
|
|
|
|
and
|
|
|
|
\[
|
|
|
|
E_\xi \coloneqq \{x \in C : \phi(x) \le \xi\}
|
|
|
|
\]
|
|
|
|
are Borel subsets of $X$.
|
|
|
|
\end{theorem}
|
|
|
|
\begin{proof}
|
|
|
|
% Let
|
|
|
|
% \begin{IEEEeqnarray*}{rCl}
|
|
|
|
% x \prec y&:\iff& x,y \in A \land \phi(x) < \phi(y)\\
|
|
|
|
% &\iff& x,y \in A \land y \not\le_\phi^\ast x.
|
|
|
|
% \end{IEEEeqnarray*}
|
|
|
|
% Since $A$ is analytic,
|
|
|
|
% this relation is analytic and wellfounded on $X$.
|
|
|
|
% By \yaref{thm:kunenmartin}
|
|
|
|
% we get $\rho(\prec) < \omega_1$.
|
|
|
|
% Thus $\sup \{\phi(x) : x \in A\} < \omega_1$.
|
|
|
|
%
|
|
|
|
% Since $D_\xi = \bigcup_{\eta < \xi} E_\xi$,
|
|
|
|
% it suffices to check $E_\xi \in \Sigma_1^1(X)$.
|
|
|
|
% If $\alpha = \sup \{\phi(x) : x \in C\}$,
|
|
|
|
% we have $E_\xi = E_\alpha$ for all $\alpha < \xi < \omega_1$.
|
|
|
|
|
|
|
|
\todo{TODO: Copy from official notes}
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\section{Abstract Topological Dynamics}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $T$ be a topological group\footnote{usually $T = \Z$ with the discrete topology}
|
|
|
|
and let $X$ be a compact metrizable space.
|
|
|
|
|
|
|
|
A \vocab{flow} $(X, T)$, sometimes denoted $T \acts X$
|
|
|
|
is a continuous action
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
T \times X&\longrightarrow & X \\
|
|
|
|
(t,x) &\longmapsto & tx.
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
|
|
|
|
A flow is \vocab{minimal} iff every orbit is dense.
|
|
|
|
|
|
|
|
$(Y,T)$ is a \vocab{subflow} of $(X,T)$ if $Y \subseteq X$
|
|
|
|
and $Y$ is invariant under $T$,
|
|
|
|
i.e.~$\forall t \in T,y \in Y.~ty \in Y$.
|
|
|
|
|
|
|
|
A flow $(X,T)$ is \vocab{isometric}
|
|
|
|
iff there is a metric $d$ on $X$ such that
|
|
|
|
for all $t \in T$ the map
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
a_t\colon X &\longrightarrow & X \\
|
|
|
|
x &\longmapsto & tx
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
is an \vocab{isometry},
|
|
|
|
i.e.~$\forall t \in T.~\forall x,y \in X.~d(a_t(x),a_t(y)) = d(x,y)$.
|
|
|
|
|
|
|
|
If $(X,T)$ is a flow, then a pair $(x,y)$, $x \neq y$
|
|
|
|
is \vocab{proximal} iff
|
|
|
|
\[
|
|
|
|
\exists z \in X.~\exists (t_n)_{n < } \in T^{\omega}.~t_n x \xrightarrow{n \to \infty} z \land t_n y \xrightarrow{n \to \infty} z.
|
|
|
|
\]
|
|
|
|
|
|
|
|
A flow is \vocab{distal} iff
|
|
|
|
it has no proximal pair.
|
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
Note that a flow is minimal iff it has no proper subflows.
|
|
|
|
\end{remark}
|
|
|
|
% \begin{example}
|
|
|
|
% Recall that $S_1 = \{z \in \C : |z| = 1\}$.
|
|
|
|
% Let $X = S_1$, $T = S_1$
|
|
|
|
% $(\alpha,\beta) \mapsto \alpha + \beta$ is isometric.
|
|
|
|
% % TODO: In the official notes it says \alpha + \beta, but this is no group action.
|
|
|
|
% % Maybe \alpha * \beta ?
|
|
|
|
% \end{example}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $X,Y$ be compact metric spaces
|
|
|
|
and $\pi\colon (X,T) \to (Y,T)$ a factor map.
|
|
|
|
Then $(X,T)$ is an \vocab{isometric extension}
|
|
|
|
of $(Y,T)$ if there is a real valued $\rho:$
|
|
|
|
defined on the pullback, $\{(x_1,x_2) \in X^2 : \pi(x_1) = \pi(x_2)\}$, % TODO nice notation?
|
|
|
|
such that
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
\item $\rho$ is continuous.
|
|
|
|
\item For each $y \in Y$, $\rho$ is a metric on the fibre
|
|
|
|
$X_y \coloneqq \{x \in X: \pi(x) = y\}$.
|
|
|
|
\item $\forall t \in T.~\rho(tx_1,tx_2) = \rho(x_1,x_2)$.
|
|
|
|
\item $\forall y,y' \in Y.~$
|
|
|
|
the metric spaces $(X_y, \rho)$ and $(X_{y'}, \rho)$
|
|
|
|
are isometric.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
A flow is isometric iff it is an isometric extension
|
|
|
|
of the trivial flow,
|
|
|
|
i.e.~the flow acting on a singleton.
|
|
|
|
% TODO THINK ABOUT THIS!
|
|
|
|
\end{remark}
|
|
|
|
\begin{proposition}
|
|
|
|
An isometric extension of a distal flow is distal.
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
|
|
|
Let $\pi\colon X\to Y$ be an isometric extension.
|
|
|
|
Towards a contradiction,
|
|
|
|
suppose that $x_1,x_2 \in X$ are proximal.
|
|
|
|
Take $z \in X$ and $(g_n) \in T^{\omega}$
|
|
|
|
such that $g_n x_1 \to z$ and $g_n x_2 \to z$.
|
|
|
|
|
|
|
|
Then $g_n \pi(x_1) \to \pi(z)$
|
|
|
|
and $g_n \pi(x_2) \to \pi(z)$,
|
|
|
|
so by distality of $Y$
|
|
|
|
we have $\pi(x_1) = \pi(x_{2})$.
|
|
|
|
Then $\rho(g_n x_1, g_n x_2)$
|
|
|
|
is defined and equal to $\rho(x_1,x_2)$.
|
|
|
|
By the continuity of $\rho$,
|
|
|
|
we get $\rho(g_n x_1, g_n x_2) \to \rho(z,z) = 0$.
|
|
|
|
Therefore $\rho(x_1,x_2) = 0$.
|
|
|
|
Hence $x_1 = x_2$ $\lightning$.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $\Sigma = \{(X_i, T) : i \in I\} $
|
|
|
|
be a collection of factors of $(X,T)$. % TODO State precise definition of a factor
|
|
|
|
Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map.
|
|
|
|
Then $(X, T)$ is the \vocab{limit} of $\Sigma$
|
|
|
|
iff
|
|
|
|
\[
|
|
|
|
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
|
|
|
\]
|
|
|
|
% TODO think about abstract nonsense
|
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{proposition}
|
|
|
|
A limit of distal flows is distal.
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
|
|
|
Let $(X,T)$ be a limit of $\Sigma = \{(X_i, T) : i \in I\}$.
|
|
|
|
Suppose that each $(X_i, T)$ is distal.
|
|
|
|
If $(X,T)$ was not distal,
|
|
|
|
then there were $x_1, x_2, z \in X$
|
|
|
|
and a sequence $(g_n)$ in $T$
|
|
|
|
with $g_n x_1 \to z$ and $g_n x_2 \to z$.
|
|
|
|
Take $i \in I$ such that $\pi_i(x_1) \neq \pi_i(x_2)$.
|
|
|
|
But then $g_n \pi_i(x_1) \to \pi_i(z)$
|
|
|
|
and $g_n \pi_i(x_2) \to \pi_i(z)$,
|
|
|
|
which is a contradiction since $(X_i, T)$ is distal.
|
|
|
|
\end{proof}
|