2024-01-25 14:01:05 +01:00
|
|
|
\lecture{08}{2023-11-10}{}%
|
|
|
|
\gist{\footnote{%
|
2024-01-23 21:52:45 +01:00
|
|
|
In the beginning of the lecture, we finished
|
|
|
|
the proof of \yaref{thm:clopenize:l2}.
|
|
|
|
This has been moved to the notes on lecture 7.%
|
2024-01-25 14:01:05 +01:00
|
|
|
}}{}
|
2023-11-13 00:23:51 +01:00
|
|
|
|
|
|
|
\subsection{Parametrizations}
|
2024-01-17 01:15:13 +01:00
|
|
|
%\todo{choose better title}
|
2023-11-13 00:23:51 +01:00
|
|
|
|
|
|
|
|
|
|
|
Let $\Gamma$ denote a collection of sets in some space.
|
|
|
|
For us $\Gamma$ will be one of $\Sigma^0_\xi(X), \Pi^0_\xi(X), \Delta^0_\xi(X), \cB(X)$,
|
|
|
|
where $X$ is a metrizable, usually second countable space.
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
We say that $\cU \subseteq Y \times X$
|
|
|
|
is \vocab{$Y$-universal} for $\Gamma(X)$ /
|
|
|
|
$\cU$ \vocab{parametrizes} $\Gamma(X)$
|
|
|
|
iff:
|
|
|
|
\begin{itemize}
|
|
|
|
\item $\cU \in \Gamma$,
|
|
|
|
\item $\{U_y : y \in Y\} = \Gamma(X)$.
|
|
|
|
\end{itemize}
|
|
|
|
\end{definition}
|
2024-01-25 14:01:05 +01:00
|
|
|
\gist{%
|
|
|
|
\begin{example}
|
|
|
|
Let $X = \omega^\omega$, $Y = 2^{\omega}$
|
|
|
|
and consider $\Gamma = \Sigma^0_{\omega+5}(\omega^\omega)$.
|
|
|
|
We will show that there is a $2^{\omega}$-universal
|
|
|
|
set for $\Gamma$.
|
|
|
|
\end{example}
|
|
|
|
}{}
|
2023-11-13 00:23:51 +01:00
|
|
|
|
|
|
|
\begin{theorem}
|
2023-11-14 11:53:30 +01:00
|
|
|
\label{thm:cantoruniversal}
|
2023-11-13 00:23:51 +01:00
|
|
|
Let $X$ be a separable, metrizable space.
|
|
|
|
Then for every $\xi \ge 1$,
|
|
|
|
there is a $2^{\omega}$-universal
|
|
|
|
set for $\Sigma^0_\xi(X)$ and
|
|
|
|
similarly for $\Pi^0_\xi(X)$.
|
|
|
|
\end{theorem}
|
|
|
|
\begin{proof}
|
|
|
|
Note that if $\cU$ is $2^{\omega}$ universal for
|
|
|
|
$\Sigma^0_\xi(X)$, then $(2^{\omega} \times X) \setminus \cU$
|
|
|
|
is $2^{\omega}$-universal for $\Pi^0_\xi(X)$.
|
|
|
|
Thus it suffices to consider $\Sigma^0_\xi(X)$.
|
|
|
|
|
|
|
|
First let $\xi = 1$.
|
|
|
|
We construct $\cU \overset{\text{open}}{\subseteq} 2^{\omega} \times X$
|
|
|
|
such that
|
|
|
|
\[
|
|
|
|
\{U_y : y \in 2^\omega\} = \Sigma^0_1(X).
|
|
|
|
\]
|
|
|
|
|
|
|
|
Let $(V_n)$ be a basis of open sets of $X$.
|
|
|
|
For all $y \in 2^\omega$ and $x \in X$
|
|
|
|
put $(y,x) \in \cU$ iff
|
|
|
|
$x \in \bigcup \{V_n : y_n = 1\}$.
|
|
|
|
$\cU$ is open.
|
2024-01-17 01:15:13 +01:00
|
|
|
For any $V \overset{\text{open}}{\subseteq} X$,
|
|
|
|
define $y \in 2^\omega$
|
|
|
|
by $y_n = 1$ iff $V_n \subseteq V$.
|
2023-11-13 00:23:51 +01:00
|
|
|
Then $\cU_y = V$.
|
|
|
|
|
|
|
|
|
|
|
|
Now suppose that there exists a
|
|
|
|
$2^{\omega}$-universal set for $\Sigma^0_{\eta}(X)$
|
|
|
|
for all $\eta < \xi$.
|
|
|
|
Fix $\xi_0 \le \xi_1 \le \ldots < \xi$
|
|
|
|
such that $\xi_n \to \xi$ if $\xi$ is a limit,
|
|
|
|
or $\xi_n = \xi'$ if $\xi = \xi' +1$ is a successor.
|
|
|
|
|
|
|
|
Recall that $\eta_1 \le \eta_2 \implies \Pi^0_{\eta_1}(X) \subseteq \Pi^0_{\eta_2}(X)$.
|
|
|
|
|
|
|
|
Note that if $A = \bigcup_n A_n$, with $A_n \in \Pi^0_{\eta_n}(X)$
|
2024-01-17 01:15:13 +01:00
|
|
|
for some $\eta_n < \xi$,
|
2023-11-13 00:23:51 +01:00
|
|
|
we also have
|
|
|
|
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
|
|
|
|
|
|
|
We construct a $(2^\omega)^\omega \cong 2^\omega$-universal set
|
|
|
|
for $\Sigma^0_\xi(X)$.
|
|
|
|
For $(y_n) \in (2^\omega)^\omega$
|
|
|
|
and $x \in X$
|
|
|
|
we set $((y_n), x) \in \cU$
|
|
|
|
iff $\exists n.~(y_n, x) \in U_{\xi_n}$,
|
|
|
|
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{y_n}$.
|
|
|
|
|
|
|
|
Let $A \in \Sigma^0_\xi(X)$.
|
|
|
|
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
|
|
|
|
% TODO
|
|
|
|
Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$.
|
|
|
|
\end{proof}
|
2023-11-14 11:53:30 +01:00
|
|
|
\begin{remark}
|
|
|
|
Since $2^{\omega}$ embeds
|
|
|
|
into any uncountable polish space $Y$
|
|
|
|
such that the image is closed,
|
2024-01-17 01:15:13 +01:00
|
|
|
we can replace $2^{\omega}$ by $Y$
|
2023-11-14 11:53:30 +01:00
|
|
|
in the statement of the theorem.%
|
|
|
|
\footnote{By definition of the subspace topology
|
|
|
|
and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.}
|
|
|
|
\end{remark}
|