2023-11-13 00:23:51 +01:00
\lecture { 08} { 2023-11-10} { }
\todo { put this lemma in the right place}
\begin { lemma} [Lemma 2]
Let $ ( X, \cT ) $ be a Polish space.
Let $ \cT _ n \supseteq \cT $ be Polish
with $ \cB ( X, \cT _ n ) = \cB ( X, \cT ) $ .
Let $ \cT _ \infty $ be the topology generated
by $ \bigcup _ n \cT _ n $ .
Then $ ( X, \cT _ \infty ) $ is Polish
and $ \cB ( X, \cT _ \infty ) = \cB ( X, \cT ) $ .
\end { lemma}
\begin { proof}
Let $ Y = \prod _ { n \in \N } ( X, \cT _ n ) $ .
Then $ Y $ is Polish.
Let $ \delta \colon ( X, \cT _ \infty ) \to Y $
defined by $ \delta ( x ) = ( x,x,x, \ldots ) $ .
\begin { claim}
$ \delta $ is a homeomorphism.
\end { claim}
\begin { subproof}
Clearly $ \delta $ is a bijection.
We need to show that it is continuous and open.
Let $ U \in \cT _ i $ .
Then
\[
\delta ^ { -1} (D \cap \left ( X \times X \times \ldots \times U \times \ldots ) \right )) = U \in \cT _ i \subseteq \cT _ \infty ,
\]
hence $ \delta $ is continuous.
Let $ U \in \cT _ \infty $ .
Then $ U $ is the union of sets of the form
\[
V = U_ { n_ 1} \cap U_ { n_ 2} \cap \ldots \cap U_ { nu}
\]
for some $ n _ 1 < n _ 2 < \ldots < n _ u $
and $ U _ { n _ i } \in \cT _ i $ .
Thus is suffices to consider sets of this form.
We have that
\[
\delta (V) = D \cap (X \times X \times \ldots \times U_ { n_ 1} \times \ldots \times U_ { n_ 2} \times \ldots \times U_ { n_ u} \times X \times \ldots ) \overset { \text { open} } { \subseteq } D.
\]
\end { subproof}
This will finish the proof since
\[
D = \{ (x,x,\ldots ) \in Y : x \in X\} \overset { \text { closed} } { \subseteq } Y
\]
Why? Let $ ( x _ n ) \in Y \setminus D $ .
Then there are $ i < j $ such that $ x _ i \neq x _ j $ .
Take disjoint open $ x _ i \in U $ , $ x _ j \in V $ .
Then
\[ ( x _ n ) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots \]
is open in $ Y \setminus D $ .
Hence $ Y \setminus D $ is open, thus $ D $ is closed.
It follows that $ D $ is Polish.
\end { proof}
\subsection { Parametrizations}
2024-01-17 01:15:13 +01:00
%\todo{choose better title}
2023-11-13 00:23:51 +01:00
Let $ \Gamma $ denote a collection of sets in some space.
For us $ \Gamma $ will be one of $ \Sigma ^ 0 _ \xi ( X ) , \Pi ^ 0 _ \xi ( X ) , \Delta ^ 0 _ \xi ( X ) , \cB ( X ) $ ,
where $ X $ is a metrizable, usually second countable space.
\begin { definition}
We say that $ \cU \subseteq Y \times X $
is \vocab { $ Y $ -universal} for $ \Gamma ( X ) $ /
$ \cU $ \vocab { parametrizes} $ \Gamma ( X ) $
iff:
\begin { itemize}
\item $ \cU \in \Gamma $ ,
\item $ \{ U _ y : y \in Y \} = \Gamma ( X ) $ .
\end { itemize}
\end { definition}
\begin { example}
Let $ X = \omega ^ \omega $ , $ Y = 2 ^ { \omega } $
and consider $ \Gamma = \Sigma ^ 0 _ { \omega + 5 } ( \omega ^ \omega ) $ .
We will show that there is a $ 2 ^ { \omega } $ -universal
set for $ \Gamma $ .
\end { example}
\begin { theorem}
2023-11-14 11:53:30 +01:00
\label { thm:cantoruniversal}
2023-11-13 00:23:51 +01:00
Let $ X $ be a separable, metrizable space.
Then for every $ \xi \ge 1 $ ,
there is a $ 2 ^ { \omega } $ -universal
set for $ \Sigma ^ 0 _ \xi ( X ) $ and
similarly for $ \Pi ^ 0 _ \xi ( X ) $ .
\end { theorem}
\begin { proof}
Note that if $ \cU $ is $ 2 ^ { \omega } $ universal for
$ \Sigma ^ 0 _ \xi ( X ) $ , then $ ( 2 ^ { \omega } \times X ) \setminus \cU $
is $ 2 ^ { \omega } $ -universal for $ \Pi ^ 0 _ \xi ( X ) $ .
Thus it suffices to consider $ \Sigma ^ 0 _ \xi ( X ) $ .
First let $ \xi = 1 $ .
We construct $ \cU \overset { \text { open } } { \subseteq } 2 ^ { \omega } \times X $
such that
\[
\{ U_ y : y \in 2^ \omega \} = \Sigma ^ 0_ 1(X).
\]
Let $ ( V _ n ) $ be a basis of open sets of $ X $ .
For all $ y \in 2 ^ \omega $ and $ x \in X $
put $ ( y,x ) \in \cU $ iff
$ x \in \bigcup \{ V _ n : y _ n = 1 \} $ .
$ \cU $ is open.
2024-01-17 01:15:13 +01:00
For any $ V \overset { \text { open } } { \subseteq } X $ ,
define $ y \in 2 ^ \omega $
by $ y _ n = 1 $ iff $ V _ n \subseteq V $ .
2023-11-13 00:23:51 +01:00
Then $ \cU _ y = V $ .
Now suppose that there exists a
$ 2 ^ { \omega } $ -universal set for $ \Sigma ^ 0 _ { \eta } ( X ) $
for all $ \eta < \xi $ .
Fix $ \xi _ 0 \le \xi _ 1 \le \ldots < \xi $
such that $ \xi _ n \to \xi $ if $ \xi $ is a limit,
or $ \xi _ n = \xi ' $ if $ \xi = \xi ' + 1 $ is a successor.
Recall that $ \eta _ 1 \le \eta _ 2 \implies \Pi ^ 0 _ { \eta _ 1 } ( X ) \subseteq \Pi ^ 0 _ { \eta _ 2 } ( X ) $ .
Note that if $ A = \bigcup _ n A _ n $ , with $ A _ n \in \Pi ^ 0 _ { \eta _ n } ( X ) $
2024-01-17 01:15:13 +01:00
for some $ \eta _ n < \xi $ ,
2023-11-13 00:23:51 +01:00
we also have
$ A = \bigcup _ n A _ n' $ with $ A' _ n \in \Pi ^ 0 _ { \xi _ n } ( X ) $ .
We construct a $ ( 2 ^ \omega ) ^ \omega \cong 2 ^ \omega $ -universal set
for $ \Sigma ^ 0 _ \xi ( X ) $ .
For $ ( y _ n ) \in ( 2 ^ \omega ) ^ \omega $
and $ x \in X $
we set $ ( ( y _ n ) , x ) \in \cU $
iff $ \exists n.~ ( y _ n, x ) \in U _ { \xi _ n } $ ,
i.e.~iff $ \exists n.~x \in ( U _ { \xi _ n } ) _ { y _ n } $ .
Let $ A \in \Sigma ^ 0 _ \xi ( X ) $ .
Then $ A = \bigcup _ { n } B _ n $ for some $ B _ n \in \Pi ^ 0 _ { \xi _ n } ( X ) $ .
% TODO
Furthermore $ \cU \in \Sigma ^ 0 _ { \xi } ( ( 2 ^ \omega ) ^ \omega \times X ) $ .
\end { proof}
2023-11-14 11:53:30 +01:00
\begin { remark}
Since $ 2 ^ { \omega } $ embeds
into any uncountable polish space $ Y $
such that the image is closed,
2024-01-17 01:15:13 +01:00
we can replace $ 2 ^ { \omega } $ by $ Y $
2023-11-14 11:53:30 +01:00
in the statement of the theorem.%
\footnote { By definition of the subspace topology
and transfinite induction, $ \Sigma ^ 0 _ \xi ( Y ) \defon { 2 ^ \omega } = \Sigma ^ 0 _ \xi ( 2 ^ \omega ) $ .}
\end { remark}