2023-12-01 11:58:27 +01:00
|
|
|
\lecture{14}{2023-12-01}{}
|
|
|
|
|
|
|
|
\begin{theorem}[Moschovakis]
|
|
|
|
If $C$ is coanalytic,
|
|
|
|
then there exists a $\Pi^1_1$-rank on $C$.
|
|
|
|
\end{theorem}
|
|
|
|
\begin{proof}
|
|
|
|
Pick a $\Pi^1_1$-complete set.
|
|
|
|
It suffices to show that there is a rank on it.
|
|
|
|
Then use the reduction to transfer
|
|
|
|
it to any coanalytic set,
|
|
|
|
i.e.~for $x,y \in C'$
|
|
|
|
let
|
|
|
|
\[
|
|
|
|
x \le^{\ast}_{C'} y :\iff f(x) \le^\ast_{C} f(y)
|
|
|
|
\]
|
|
|
|
and similarly for $<^\ast$.
|
|
|
|
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJZIl0sWzIsMCwiWCJdLFswLDEsIkMnIl0sWzIsMSwiQyJdLFsyLDIsIlxcUGlfMV4xLVxcdGV4dHtjb21wbGV0ZX0iXSxbMCwxLCJmIl0sWzIsMCwiXFxzdWJzZXRlcSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMSwiXFxzdWJzZXRlcSIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d
|
|
|
|
\[\begin{tikzcd}
|
|
|
|
Y && X \\
|
|
|
|
{C'} && C \\
|
|
|
|
&& {\Pi_1^1-\text{complete}}
|
|
|
|
\arrow["f", from=1-1, to=1-3]
|
|
|
|
\arrow["\subseteq", hook, from=2-1, to=1-1]
|
|
|
|
\arrow["\subseteq"', hook, from=2-3, to=1-3]
|
|
|
|
\end{tikzcd}\]
|
|
|
|
|
|
|
|
Let $X = 2^{\Q} \supseteq \WO$.
|
|
|
|
We have already show that $\WO$ is $\Pi^1_1$-complete.
|
|
|
|
Set $\phi(x) \coloneqq \otp(x)$
|
|
|
|
($\otp\colon \WO \to \Ord$ denotes the order type).
|
|
|
|
We show that this is a $\Pi^1_1$-rank.
|
|
|
|
|
|
|
|
Define $E \subseteq \Q^{\Q} \times 2^{\Q} \times 2^{\Q}$
|
|
|
|
by
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
(f,x,y) \in E &:\iff& f \text{ order embeds $(x, \le_{\Q})$ to $(y,\le _{\Q})$}\\
|
|
|
|
&\iff& \forall p,q \in \Q.~(p,q \in x \land p <_{\Q} q \implies f(p), f(q) \in y \land f(p) <_{\Q} f(q))
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
$E$ is Borel as a countable intersection of clopen sets.
|
|
|
|
|
|
|
|
Define
|
|
|
|
$x <^\ast_{\phi}$
|
|
|
|
iff
|
|
|
|
\begin{itemize}
|
|
|
|
\item $(x, <_{\Q})$ is well ordered and
|
|
|
|
\item $(y, <_{\Q})$ does not order embed into $(x, <_{\Q})$,
|
|
|
|
\end{itemize}
|
|
|
|
where we identify $2^\Q$ and the powerset of $\Q$.
|
|
|
|
This is equivalent to
|
|
|
|
\begin{itemize}
|
|
|
|
\item $x \in \WO$ and
|
|
|
|
\item $\forall f \in \Q^\Q.~(f,y,x) \not\in E$.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
Furthermore $x \le_\phi^\ast y \iff$
|
|
|
|
either $x <^\ast_\phi y$ or
|
|
|
|
$(x, <_{\Q})$ and $(y, <_\Q)$
|
|
|
|
are well ordered with the same order type,
|
|
|
|
i.e.~either $x<^\ast_\phi y$ or
|
|
|
|
$x,y \in \WO$ and any order embedding of $(x,<_{\Q})$ to
|
|
|
|
$(y, <_{\Q})$ is cofinal%
|
|
|
|
\footnote{%
|
|
|
|
Recall that $A \subseteq (x,<_{\Q})$
|
|
|
|
is \vocab{cofinal} if $\forall t \in x.~\exists a \in A.~t\le _{\Q} a$.%
|
|
|
|
}
|
|
|
|
in $(y, <_\Q)$ is
|
|
|
|
cofinal in $(y, <_{\Q})$ and vice versa.
|
2024-01-24 00:13:59 +01:00
|
|
|
Equivalently, either $(x <^\ast_\phi y)$
|
2023-12-01 11:58:27 +01:00
|
|
|
or
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
& &x,y \in \WO\\
|
|
|
|
&\land& \forall f \in \Q^\Q .~(E(f,x,y) \implies \forall p \in y.~\exists q \in x.~p \le f(q))\\
|
|
|
|
&\land& \forall f \in \Q^\Q .~(E(f,y,x) \implies \forall p \in x.~\exists q \in y.~p \le f(q))
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{theorem}
|
|
|
|
\label{thm:uniformization}
|
|
|
|
Let $X$ be Polish and $R \subseteq X \times \N$ by $\Pi^1_1$
|
|
|
|
(we only need that $\N$ is countable).
|
|
|
|
Then there is $R^\ast \subseteq R$ coanalytic
|
|
|
|
such that
|
|
|
|
\[
|
|
|
|
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
|
2024-01-24 00:13:59 +01:00
|
|
|
\]
|
|
|
|
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
|
|
|
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
|
2023-12-01 11:58:27 +01:00
|
|
|
|
|
|
|
\end{theorem}
|
|
|
|
\begin{proof}
|
|
|
|
Let $\phi\colon R \to \Ord$
|
|
|
|
by a $\Pi^1_1$-rank.
|
|
|
|
Set
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
(x,n) \in R^\ast &:\iff& (x,n) \in R\\
|
|
|
|
&&\land \forall m.~(x,n) \le^\ast_\phi (x,m)\\
|
|
|
|
&&\land \forall m.~\left( (x,n) <^\ast_\phi (x,m) \lor n \le m \right),
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
i.e.~take the element with minimal rank
|
|
|
|
that has the minimal second coordinate among those elements.
|
|
|
|
\end{proof}
|
|
|
|
\begin{corollary}[Countable Reduction for $\Pi^1_1$ Sets]
|
|
|
|
Let $X$ be a Polish space
|
|
|
|
and $(C_n)_n$ a sequence of coanalytic subsets of $X$.
|
|
|
|
|
|
|
|
Then there exists a sequence $(C_n^\ast)$
|
|
|
|
of pairwise disjoint $\Pi^1_1$-sets
|
|
|
|
with $C_n^\ast \subseteq C_n$
|
|
|
|
and
|
|
|
|
\[
|
|
|
|
\bigcup_{n \in \N} C_n^\ast = \bigcup_{n \in \N} C_n.
|
|
|
|
\]
|
|
|
|
\end{corollary}
|
|
|
|
\begin{proof}
|
|
|
|
Define $R \subseteq X \times \N$ by setting
|
|
|
|
$(x,n) \in R :\iff x \in C_n$
|
|
|
|
and apply \yaref{thm:uniformization}.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
Let $X$ be a Polish space.
|
|
|
|
If $(X, \prec)$ is well founded (i.e.~there are no infinite descending chains)
|
|
|
|
then we define a rank $\rho_{y}\colon X > \Ord$
|
|
|
|
as follows:
|
|
|
|
For minimal elements the rank is $0$.
|
|
|
|
Otherwise set $\rho_<(x) \coloneqq \sup \{\rho_<(y) + 1 : y \prec x\}$.
|
|
|
|
Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
|
|
|
|
|
|
|
\begin{exercise}
|
|
|
|
$\rho(\prec) \le |X|^+$ (successor cardinal).
|
|
|
|
(for countable $<$)
|
|
|
|
\todo{TODO}
|
|
|
|
\end{exercise}
|
|
|
|
\begin{theorem}[Kunen-Martin]
|
2023-12-08 01:39:20 +01:00
|
|
|
\yalabel{Kunen-Martin}{Kunen-Martin}{thm:kunenmartin}
|
2023-12-01 11:58:27 +01:00
|
|
|
If $(X, \prec)$ is wellfounded
|
|
|
|
and $\prec \subseteq X^2$ is $\Sigma^1_1$
|
|
|
|
then $\rho(\prec) < \omega_1$.
|
|
|
|
\end{theorem}
|
|
|
|
\begin{proof}
|
|
|
|
Wlog.~$X = \cN$.
|
|
|
|
There is a tree $S$ on $\N \times \N \times \N$
|
|
|
|
(i.e.~$S \subseteq \cN^3$)
|
|
|
|
such that
|
|
|
|
\[
|
|
|
|
\forall x, y \in \cN.~\left(x \succ y \iff \exists \alpha \in \N.~(x,\alpha,y) \in [S]\right).
|
|
|
|
\]
|
|
|
|
|
|
|
|
Let
|
|
|
|
\[
|
|
|
|
W \coloneqq \{w = (s_0,u_1,s_1,\ldots, u_n, s_n) : s_i, u_i \in \N^{n}
|
|
|
|
\land (s_{i-1}, u_i, s_i) \in S\}.
|
|
|
|
\]
|
|
|
|
|
|
|
|
So $|W| \le \aleph_0$.
|
|
|
|
Define $\prec^\ast$ on $W$
|
|
|
|
by setting
|
|
|
|
\[(s_0,u_1,s_1,\ldots, u_n,s_n) \succ (s_0',u_1', s_1', \ldots, u_m', s_m') :\iff\]
|
|
|
|
\begin{itemize}
|
|
|
|
\item $n < m$,
|
|
|
|
\item $\forall i \le n.~s_i \subsetneq s_i'$ and
|
|
|
|
\item $\forall i \le n.~u_i \subsetneq u_i'$.
|
|
|
|
\end{itemize}
|
|
|
|
\begin{claim}
|
|
|
|
$\prec^\ast$ is well-founded.
|
|
|
|
\end{claim}
|
|
|
|
\begin{subproof}
|
|
|
|
If $w_n = (s_0^n, u_1^n, \ldots, u_n^n, s_n^n)$
|
|
|
|
was descending,
|
|
|
|
then let
|
|
|
|
\[
|
|
|
|
x_i \coloneqq \bigcup s_i^n \in \cN
|
|
|
|
\]
|
|
|
|
and
|
|
|
|
\[
|
|
|
|
\alpha_i \coloneqq \bigcup_n u_i^n \cN.
|
|
|
|
\]
|
|
|
|
We get $(x_{i-1}, \alpha_i, x_i) \in [S]$,
|
|
|
|
hence $x_{i-1} \succ x_i$ for all $i$,
|
|
|
|
but this is an infinite descending chain
|
|
|
|
in the original relation $\lightning$
|
|
|
|
\end{subproof}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\todo{Fix typos and end proof}
|
|
|
|
% Hence $\rho(\prec^\ast) < \omega_1$.
|
|
|
|
%
|
|
|
|
% We can turn $(X, \prec)$ into a tree $(T_\prec, \subsetneq)$
|
|
|
|
% with
|
|
|
|
% \begin{IEEEeqnarray*}{rCl}
|
|
|
|
% \rho(\prec) &=& \rho(T_{\prec})
|
|
|
|
% \end{IEEEeqnarray*}
|
|
|
|
% by setting $\emptyset \in T_{\prec}$
|
|
|
|
% and
|
|
|
|
% $(x_0,\ldots,x_n) \in T_\prec$,$x_i \in X =\cN$,
|
|
|
|
% iff $x_0 \succ x_1 \succ x_2 \succ \ldots \succ x_n$.
|
|
|
|
%
|
|
|
|
% For all $x \succ y$
|
|
|
|
% pick $\alpha_{x,y} \in \cN$
|
|
|
|
% such that $(x, \alpha_{x,y}, y) \in [S]$
|
|
|
|
% define
|
|
|
|
% \begin{IEEEeqnarray*}{rCl}
|
|
|
|
% \phi\colon T_{\prec} &\longrightarrow & W \\
|
|
|
|
% \phi(x_0,x_1,\ldots,x_n) &\longmapsto & (x_0\defon{n}, \alpha_{x_0}, x_1\defon{n},\ldots,
|
|
|
|
% \alpha_{x_{n-1}}, x_n\defon{n}).
|
|
|
|
% \end{IEEEeqnarray*}
|
|
|
|
% Then $\phi$ is a homomorphism of $\subsetneq$ to $<^\ast$
|
|
|
|
% and
|
|
|
|
% \[
|
|
|
|
% \rho(<) = \rho(T_{\prec}, \subsetneq) \le \rho(<^\ast) < \omega_1.
|
|
|
|
% \]
|
|
|
|
|
|
|
|
\todo{Exercise}
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
|
|
|
|
|