w23-logic-3/inputs/lecture_08.tex

103 lines
3.3 KiB
TeX
Raw Normal View History

2024-01-25 14:01:05 +01:00
\lecture{08}{2023-11-10}{}%
\gist{\footnote{%
2024-01-23 21:52:45 +01:00
In the beginning of the lecture, we finished
the proof of \yaref{thm:clopenize:l2}.
This has been moved to the notes on lecture 7.%
2024-01-25 14:01:05 +01:00
}}{}
2023-11-13 00:23:51 +01:00
\subsection{Parametrizations}
2024-01-17 01:15:13 +01:00
%\todo{choose better title}
2023-11-13 00:23:51 +01:00
Let $\Gamma$ denote a collection of sets in some space.
For us $\Gamma$ will be one of $\Sigma^0_\xi(X), \Pi^0_\xi(X), \Delta^0_\xi(X), \cB(X)$,
where $X$ is a metrizable, usually second countable space.
\begin{definition}
We say that $\cU \subseteq Y \times X$
is \vocab{$Y$-universal} for $\Gamma(X)$ /
$\cU$ \vocab{parametrizes} $\Gamma(X)$
iff:
\begin{itemize}
2024-02-02 01:48:02 +01:00
\item $\cU \in \Gamma(Y \times X)$,
2023-11-13 00:23:51 +01:00
\item $\{U_y : y \in Y\} = \Gamma(X)$.
\end{itemize}
\end{definition}
2024-01-25 14:01:05 +01:00
\gist{%
\begin{example}
Let $X = \omega^\omega$, $Y = 2^{\omega}$
and consider $\Gamma = \Sigma^0_{\omega+5}(\omega^\omega)$.
We will show that there is a $2^{\omega}$-universal
set for $\Gamma$.
\end{example}
}{}
2023-11-13 00:23:51 +01:00
\begin{theorem}
2023-11-14 11:53:30 +01:00
\label{thm:cantoruniversal}
2023-11-13 00:23:51 +01:00
Let $X$ be a separable, metrizable space.
Then for every $\xi \ge 1$,
there is a $2^{\omega}$-universal
set for $\Sigma^0_\xi(X)$ and
similarly for $\Pi^0_\xi(X)$.
\end{theorem}
\begin{proof}
Note that if $\cU$ is $2^{\omega}$ universal for
$\Sigma^0_\xi(X)$, then $(2^{\omega} \times X) \setminus \cU$
is $2^{\omega}$-universal for $\Pi^0_\xi(X)$.
Thus it suffices to consider $\Sigma^0_\xi(X)$.
First let $\xi = 1$.
We construct $\cU \overset{\text{open}}{\subseteq} 2^{\omega} \times X$
such that
\[
\{U_y : y \in 2^\omega\} = \Sigma^0_1(X).
\]
Let $(V_n)$ be a basis of open sets of $X$.
For all $y \in 2^\omega$ and $x \in X$
put $(y,x) \in \cU$ iff
$x \in \bigcup \{V_n : y_n = 1\}$.
$\cU$ is open.
2024-01-17 01:15:13 +01:00
For any $V \overset{\text{open}}{\subseteq} X$,
define $y \in 2^\omega$
by $y_n = 1$ iff $V_n \subseteq V$.
2023-11-13 00:23:51 +01:00
Then $\cU_y = V$.
Now suppose that there exists a
$2^{\omega}$-universal set for $\Sigma^0_{\eta}(X)$
for all $\eta < \xi$.
Fix $\xi_0 \le \xi_1 \le \ldots < \xi$
such that $\xi_n \to \xi$ if $\xi$ is a limit,
or $\xi_n = \xi'$ if $\xi = \xi' +1$ is a successor.
Recall that $\eta_1 \le \eta_2 \implies \Pi^0_{\eta_1}(X) \subseteq \Pi^0_{\eta_2}(X)$.
Note that if $A = \bigcup_n A_n$, with $A_n \in \Pi^0_{\eta_n}(X)$
2024-01-17 01:15:13 +01:00
for some $\eta_n < \xi$,
2023-11-13 00:23:51 +01:00
we also have
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
We construct a $(2^\omega)^\omega \cong 2^\omega$-universal set
for $\Sigma^0_\xi(X)$.
For $(y_n) \in (2^\omega)^\omega$
and $x \in X$
we set $((y_n), x) \in \cU$
iff $\exists n.~(y_n, x) \in U_{\xi_n}$,
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{y_n}$.
Let $A \in \Sigma^0_\xi(X)$.
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
% TODO
Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$.
\end{proof}
2023-11-14 11:53:30 +01:00
\begin{remark}
Since $2^{\omega}$ embeds
into any uncountable polish space $Y$
such that the image is closed,
2024-01-17 01:15:13 +01:00
we can replace $2^{\omega}$ by $Y$
2023-11-14 11:53:30 +01:00
in the statement of the theorem.%
\footnote{By definition of the subspace topology
and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.}
\end{remark}