148 lines
4.7 KiB
TeX
148 lines
4.7 KiB
TeX
\lecture{09}{2023-11-16}{}
|
|
|
|
|
|
\begin{definition}
|
|
Let $R$ be a binary relation.
|
|
$R$ is called \vocab{well-founded}
|
|
iff for all classes $X$,
|
|
there is an $R$-least $y$ such that
|
|
there is no $z \in X$ with $(z,y) \in R$.
|
|
\end{definition}
|
|
|
|
\begin{theorem}[Induction (again, but now for classes)]
|
|
Suppose that $R$ is a well-founded relation.
|
|
Let $X$ be a class such that for all sets $x$,
|
|
\[
|
|
\{y : (y,x) \in R\} \subseteq X \implies x \in X.
|
|
\]
|
|
Then $X$ contains all sets.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Assume otherwise.
|
|
Consider $Y = \{x : x \not\in X\} \neq \emptyset$.
|
|
By hypothesis, there is some
|
|
$x \in Y$ such that $(y,x) \not\in R$ for all $y \in Y$.
|
|
In other words, if $(y,x) \in R$,
|
|
then $x \not\in Y$, i.e.~$x \in X$.
|
|
Thus $\{y: (y,x) \in R\} \subseteq X$.
|
|
Hence $x \in X \lightning$.
|
|
\end{proof}
|
|
|
|
An alternative way of formulating this is
|
|
\begin{theorem}
|
|
Suppose $R$ is a well-founded binary relation on $A$,
|
|
i.e.~$R \subseteq A \times A$.
|
|
Suppose for all $\overline{A} \subseteq A$
|
|
is such that for all $x \in X$,
|
|
\[
|
|
\{y \in A: (y,x) \in R\} \subseteq \overline{A} \implies x \in \overline{A}.
|
|
\]
|
|
Then $\overline{A} = A$.
|
|
\end{theorem}
|
|
|
|
\begin{definition}
|
|
Let $R$ be a binary relation.
|
|
$R$ is called \vocab{set-like}
|
|
iff for all $x$,
|
|
$\{y : (y,x) \in R\}$ is a set.
|
|
\end{definition}
|
|
|
|
\begin{theorem}
|
|
\yalabel{Recursion Theorem}{recursion}{thm:recursion}
|
|
Let $R$ be a well-founded
|
|
and set-like relation on $A$ (i.e.~$R \subseteq A \times A$).
|
|
|
|
Let $D$ be a class of triples
|
|
such that for all $u,x$ there is exactly
|
|
one $y$ with $(u,x,y) \in D$
|
|
(basically $(u,x) \mapsto y$ is a function).
|
|
|
|
Then there is a unique function $f$ on $A$
|
|
such that for all $x \in A$,
|
|
\[
|
|
(F\defon{ \{y \in A : (y,x) \in R\}}, x, F(x)) \in D\gist{,}{.}
|
|
\]
|
|
\gist{i.e.~$F(x)$ is computed from $F\defon{\{y \in A: (y,x) \in R\}}$.}{}
|
|
\end{theorem}
|
|
\begin{proof}
|
|
\gist{%
|
|
Uniqueness:
|
|
|
|
Let $F, F'$ be two such functions.
|
|
Suppose that $\overline{A} = \{ x \in A : F(x) \neq F'(x)\} \neq \emptyset$.
|
|
As $R$ is well-founded,
|
|
there is some $x \in \overline{A}$
|
|
such that $y \not\in \overline{A}$
|
|
for all $y \in A, (y,x) \in R$.
|
|
I.e. $F(y) = F'(y)$
|
|
for all $y \in A$, $(y,x) \in R$.
|
|
|
|
But then $F(x)$
|
|
is the unique $y$
|
|
with $(F\defon{\{z\colon (z,x) \in R\}}, x, y) \in D$,
|
|
in particular it is the same as $F'(x) \lightning$
|
|
|
|
|
|
Existence:
|
|
|
|
Let us call a (set) function $f$
|
|
\emph{good},
|
|
if
|
|
\begin{itemize}
|
|
\item $\dom(f) \subseteq A$,
|
|
\item if $x \in \dom(f)$ and $y \in A, (y,x) \in R$,
|
|
then $y \in \dom(f)$ and
|
|
\item for all $x \in \dom(f)$ :
|
|
\[
|
|
(f\defon{\{y \in A: (y,x) \in R\}}, x, f(x)) \in D.
|
|
\]
|
|
\end{itemize}
|
|
|
|
|
|
By the proof of uniqueness,
|
|
we have that all good functions are coherent,
|
|
i.e.~$f(x) = f'(x)$ for good functions
|
|
$f,f'$ and all $x \in \dom(f) \cap \dom(f')$.
|
|
We may now let $F = \bigcup \{f: f \text{ is good}\}$,
|
|
this exists by comprehension.
|
|
|
|
If $x \in \dom(F)$ and $y \in A$ with $(y,x) \in R$,
|
|
then $y \in \dom(F)$
|
|
and \[(F\defon{\{y : (y,x) \in R\}}, x,F(x)) \in D.\]
|
|
|
|
We need to show that $\dom(F) = A$.
|
|
This holds by induction:
|
|
Suppose for a contradiction that $A \setminus \dom(F) \neq \emptyset$.
|
|
Then there exists an $R$-least element $x$ in this set,
|
|
i.e.$x \not\in \dom(F)$,
|
|
but $y \in \dom(F)$ for all $(y,x) \in R$.
|
|
For each $y \in A$ with $(y,x) \in R$,
|
|
pick some good function $f_y$ with $y \in \dom(f_y)$
|
|
Since $R$ is set-like,
|
|
we have that $f = \bigcup_y f_y$ is a good function.
|
|
But then $f \cup (x,z)$,
|
|
where $z$ is unique such that $(f\defon{\{y : (y,x) \in R\}}, x, z) \in D$,
|
|
is good $\lightning$.
|
|
}{
|
|
\begin{itemize}
|
|
\item Uniqueness:
|
|
|
|
Consider $\overline{A} \coloneqq \{x \in A : F(x) \neq F'(x)\}$
|
|
for two such functions. If $\overline{A} \neq \emptyset$,
|
|
there is a minimal element $\lightning$.
|
|
\item Existence:
|
|
|
|
\begin{itemize}
|
|
\item call set-function $f$ \emph{good} iff:
|
|
\begin{itemize}
|
|
\item $\dom(f) \subseteq A$,
|
|
\item $x \in \dom(f), y <_R x \implies y \in \dom(f)$,
|
|
\item $\forall x \in \dom(f).~(f\defon{\{y \in A : y <_R x\}}, x, f(x)) \in D$.
|
|
\end{itemize}
|
|
\item $F \coloneqq \bigcup \{f : f \text{ good}\}$ (comprehension)
|
|
\item $\dom F = A$ (induction).
|
|
\end{itemize}
|
|
|
|
\end{itemize}
|
|
}
|
|
\end{proof}
|