thank you, Mirko!
This commit is contained in:
parent
deaf6a6bb6
commit
11f21af966
7 changed files with 37 additions and 32 deletions
|
@ -124,9 +124,12 @@ together with the additional axiom:
|
|||
\begin{fact}
|
||||
$\BGC$ is conservative over $\ZFC$,
|
||||
i.e.~for all formulae $\phi$ in the language
|
||||
of set theory (only set variables):
|
||||
of set theory (only set variables)
|
||||
we have that
|
||||
if $\BGC \vdash \phi$ then $\ZFC \vdash \phi$.
|
||||
\end{fact}
|
||||
|
||||
|
||||
We cannot prove this fact at this point,
|
||||
as the proof requires forcing.
|
||||
The converse is easy however, i.e.~if
|
||||
|
@ -172,9 +175,9 @@ $\ZFC \vdash \phi$ then $\BGC \vdash \phi$.
|
|||
\end{lemma}
|
||||
\begin{proof}
|
||||
Suppose such sequence exists.
|
||||
Then $\{x_n : n < \omega\}$
|
||||
(this exists as by definition sequence of the $x_n$ is a function
|
||||
and this set is the range of that function)
|
||||
Then $\{x_n : n < \omega\}$%
|
||||
\footnote{This exists as by definition the sequence $(x_n)$ is a function
|
||||
$f\colon \omega \to V$ and this set is the image of $f$.}
|
||||
violates \AxFund.
|
||||
|
||||
For the other direction let $M \neq \emptyset$ be some set.
|
||||
|
|
|
@ -4,12 +4,12 @@
|
|||
\begin{definition}
|
||||
Let $R$ be a binary relation.
|
||||
$R$ is called \vocab{well-founded}
|
||||
if for all classes $X$,
|
||||
iff for all classes $X$,
|
||||
there is an $R$-least $y$ such that
|
||||
there is no $z \in X$ with $(z,y) \in R$.
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}[Induction (again, but now with classes)]
|
||||
\begin{theorem}[Induction (again, but now for classes)]
|
||||
Suppose that $R$ is a well-founded relation.
|
||||
Let $X$ be a class such that for all sets $x$,
|
||||
\[
|
||||
|
@ -22,7 +22,7 @@
|
|||
Consider $Y = \{x : x \not\in X\} \neq \emptyset$.
|
||||
By hypothesis, there is some
|
||||
$x \in Y$ such that $(y,x) \not\in R$ for all $y \in Y$.
|
||||
In other words, if $(y,x) \not\in R$,
|
||||
In other words, if $(y,x) \in R$,
|
||||
then $x \not\in Y$, i.e.~$x \in X$.
|
||||
Thus $\{y: (y,x) \in R\} \subseteq X$.
|
||||
Hence $x \in X \lightning$.
|
||||
|
|
|
@ -52,7 +52,7 @@ We often write $\kappa, \lambda, \ldots$ for cardinals.
|
|||
Let us now assume that for all $\kappa \in X$
|
||||
there is some $\lambda \in X$
|
||||
with $\lambda > \kappa$.
|
||||
Suppose that $\sup(X)$ is no a cardinal
|
||||
Suppose that $\sup(X)$ is not a cardinal
|
||||
and write $\mu = |\sup(X)|$.
|
||||
Then $\mu \in \sup(X)$,
|
||||
since $\sup(X)$ is an ordinal.
|
||||
|
@ -96,7 +96,7 @@ so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
|
|||
\end{notation}
|
||||
|
||||
\begin{notation}
|
||||
Let $\leftindex^a b \coloneqq \{f : f \text{ is a function}, \dom(f) = \alpha, \ran(f) \subseteq b\}$.
|
||||
Let $\leftindex^a b \coloneqq \{f : f \text{ is a function}, \dom(f) = a, \ran(f) \subseteq b\}$.
|
||||
\end{notation}
|
||||
|
||||
\begin{definition}[Cardinal arithmetic]
|
||||
|
|
|
@ -215,15 +215,17 @@ cf.~\yaref{def:inaccessible}.
|
|||
\end{IEEEeqnarray*}
|
||||
\begin{itemize}
|
||||
\item First case: $\beta \ge \alpha+1$.
|
||||
Then
|
||||
Note that for all $\gamma \le \beta$
|
||||
we have
|
||||
\[
|
||||
\aleph_{a+1}^{\aleph_\beta} \le \aleph_{\beta}^{\aleph_\beta}
|
||||
\le \left( 2^{\aleph_{\beta}} \right)^{\aleph_\beta}
|
||||
= 2^{\aleph_{\beta} \cdot \aleph_\beta} = 2^{\aleph_\beta} \le \aleph_{\alpha+1}^{\aleph_\beta}.
|
||||
\aleph_{\gamma}^{\aleph_\beta} \le \aleph_\beta^{\aleph_\beta}
|
||||
\le \left( 2^{\aleph_\beta} \right)^{\aleph_\beta}
|
||||
= 2^{\aleph_\beta \cdot \aleph_\beta} = 2^{\aleph_{\beta}}
|
||||
\le \aleph_\gamma^{\aleph_\beta}.
|
||||
\]
|
||||
Also $\aleph_\alpha^{\aleph_{\beta}} = 2^{\aleph_\beta}$
|
||||
in this case (by the same argument),
|
||||
so
|
||||
So in this case $\aleph_\alpha^{\aleph_{\beta}} = 2^{\aleph_\beta}$
|
||||
and $\aleph_{\alpha+1}^{\aleph_\beta} = 2^{\aleph_{\beta}}$.
|
||||
Thus
|
||||
\[
|
||||
\aleph_{\alpha+1}^{\aleph_{\beta}} = 2^{\aleph_{\beta}}
|
||||
= \aleph_{\alpha}^{\aleph_\beta} = \aleph_{\alpha}^{\aleph_\beta} \cdot \aleph_{\alpha+1}.
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
There are many well-orders on $\omega$.
|
||||
Let $W$ be the set of all such well-orders.
|
||||
For $R, S \in W$,
|
||||
write $R \le S$ if $R$ is isomorphic to
|
||||
write $R \le S$ iff $R$ is isomorphic to
|
||||
an initial segment of $S$.
|
||||
Consider $\faktor{W}{\sim}$,
|
||||
where $R \sim S :\iff R \le S \land S \le R$.
|
||||
|
@ -15,7 +15,7 @@
|
|||
Suppose that $\{R_n : n \in \omega\} \subseteq W$
|
||||
is such that $R_{n+1} < R_n$.
|
||||
Then there exist $n_i \in \omega$
|
||||
such that $R_i \cong R_0\defon{x <_{R_0} n_i}$
|
||||
such that $R_i \cong R_0\defon{\{x : x <_{R_0} n_i\}}$
|
||||
and these form a $<_{R_0}$ strictly decreasing sequence.
|
||||
|
||||
So $(\faktor{W}{\sim})$
|
||||
|
@ -116,13 +116,13 @@
|
|||
then $\cf(2^{\kappa}) = 2^{\kappa} > \kappa$,
|
||||
since successor cardinals are regular.
|
||||
|
||||
Suppose $\cf(2^{k}) \le \kappa$ is a limit cardinal.
|
||||
Suppose $\cf(2^{\kappa}) \le \kappa$ is a limit cardinal.
|
||||
Then there is some cofinal $f\colon \kappa\to 2^{\kappa}$.
|
||||
Write $\kappa_i = f(i)$
|
||||
(replacing $f(i)$ by $|f(i)|^{+}$ we may assume
|
||||
that every $\kappa_i$ is a cardinal).
|
||||
|
||||
For $i \in \kappa$, write $\lambda_i = 2^{k}$.
|
||||
For $i \in \kappa$, write $\lambda_i = 2^{\kappa}$.
|
||||
By \yaref{thm:koenig},
|
||||
\[
|
||||
\sup \{\kappa_i : i < \kappa\} \le \sum_{i \in \kappa} \kappa_i < \prod_{i \in \kappa} \lambda_i = \left( 2^{\kappa} \right)^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa}
|
||||
|
@ -171,14 +171,14 @@ Relevant concepts to prove this theorem:
|
|||
\item We say that $A \subseteq \alpha$
|
||||
is \vocab{unbounded} (in $\alpha$),
|
||||
iff for all $\beta < \alpha$,
|
||||
there is some $\gamma \in \alpha$
|
||||
there is some $\gamma \in A$
|
||||
such that $\beta < \gamma$.
|
||||
\item We say that $A \subseteq \alpha$
|
||||
is \vocab{closed},
|
||||
iff it is closed with respect to the order topology on $\alpha$,
|
||||
i.e.~for all $\beta < \alpha$,
|
||||
\[
|
||||
\sup(A \cap \beta) \in A.
|
||||
\sup(A \cap \beta) \in A \cup \{0\} .
|
||||
\]
|
||||
\item $A$ is \vocab{club} (\emph{cl}osed \emph{un}bounded)
|
||||
iff it is closed and unbounded.
|
||||
|
|
|
@ -77,7 +77,7 @@ Recall the following:
|
|||
of arbitrary sizes.
|
||||
How do we do this?
|
||||
Let $\phi$ be a formula.
|
||||
A \vocab{Skolem-function}
|
||||
A \vocab{Skolem-function}
|
||||
over $V_\theta$ for $\phi$
|
||||
is a function
|
||||
\[
|
||||
|
@ -136,7 +136,7 @@ Let's do a second proof of \yaref{thm:fodor}.
|
|||
\]
|
||||
|
||||
Note that $|X_{\xi}| = |X_{\xi + 1}|$
|
||||
but the size is increased at limits.
|
||||
but the size may increase at limits.
|
||||
It is easy to see inductively that $|X_{\xi}| < \kappa$
|
||||
for every $\xi < \kappa$,
|
||||
while $X_\xi \subsetneq X_{\xi'}$
|
||||
|
@ -158,7 +158,7 @@ Let's do a second proof of \yaref{thm:fodor}.
|
|||
Let $\zeta < \kappa$.
|
||||
Let us define a strictly increasing sequence
|
||||
$ \langle \xi_n : n < \omega \rangle$
|
||||
a follows.
|
||||
as follows.
|
||||
Set $\xi_0 \coloneqq \zeta$.
|
||||
Suppose $\xi_n$ has been chosen.
|
||||
Look at $X_{\xi_n} \cap \kappa$.
|
||||
|
|
|
@ -41,7 +41,7 @@ where $f(\alpha) = \gamma$.
|
|||
\gist{%
|
||||
Recall that $F \subseteq \cP(\kappa)$ is a filter if
|
||||
$X,Y \in F \implies X \cap Y \in F$,
|
||||
$X \in X, X \subseteq Y \subseteq \kappa \implies Y \in F$
|
||||
$X \in F, X \subseteq Y \subseteq \kappa \implies Y \in F$
|
||||
and $\emptyset \not\in F, \kappa \in F$.
|
||||
\todo{Move this to the definition of filter?}
|
||||
}{}
|
||||
|
@ -86,7 +86,7 @@ one cofinality.
|
|||
If $S \subseteq \kappa$
|
||||
is stationary,
|
||||
there is a sequence $\langle S_i : i < \kappa \rangle$
|
||||
of pairwise disjoint stationary sets of $\kappa$
|
||||
of pairwise disjoint stationary subsets of $\kappa$
|
||||
such that $S = \bigcup S_i$.
|
||||
\end{theorem}
|
||||
\begin{corollary}
|
||||
|
@ -109,12 +109,12 @@ one cofinality.
|
|||
% TODO: Look at this again and think about it.
|
||||
% TODO TODO TODO
|
||||
|
||||
We will only proof this for $\aleph_1$.
|
||||
We will only prove this for $\aleph_1$.
|
||||
Fix $S \subseteq \aleph_1$ stationary.
|
||||
|
||||
For each $0 < \alpha < \omega_1$,
|
||||
either $\alpha$ is a successor ordinal
|
||||
or $\alpha$ is a limit ordinal and $\cf(\alpha) = \omega_1$.
|
||||
or $\alpha$ is a limit ordinal and $\cf(\alpha) = \omega$.
|
||||
|
||||
Let $S^\ast \coloneqq \{\alpha \in S \setminus \{0\} : \alpha \text{ is a limit ordinal}\} $.
|
||||
$S^\ast$ is still stationary:
|
||||
|
@ -163,7 +163,7 @@ one cofinality.
|
|||
|
||||
Let $C' \coloneqq C \setminus (\delta^\ast + 1)$.
|
||||
$C'$ is still club.
|
||||
As $\delta^\ast$ is stationary,
|
||||
As $S^\ast$ is stationary,
|
||||
we may pick some $\alpha \in S^\ast \cap C'$.
|
||||
But then $\gamma_n^{\alpha} > \delta^\ast$
|
||||
for $n$ large enough
|
||||
|
@ -285,9 +285,9 @@ However we can say something about singular cardinals:
|
|||
Recall that $\CH$ says that $2^{\aleph_0} = \aleph_1$.
|
||||
So $\GCH \implies \CH$.
|
||||
|
||||
\yalabel{thm:silver} says that if $\GCH$ is true below $\kappa$,
|
||||
\yaref{thm:silver} says that if $\GCH$ is true below $\kappa$,
|
||||
then it is true at $\kappa$.
|
||||
|
||||
The proof of \yalabel{thm:silver} is quite elementary,
|
||||
The proof of \yaref{thm:silver} is quite elementary,
|
||||
so we will do it now, but the statement can only be fully appreciated later.
|
||||
}{}
|
||||
|
|
Loading…
Reference in a new issue