w23-logic-2/inputs/lecture_09.tex
2024-02-14 13:35:06 +01:00

149 lines
4.7 KiB
TeX

\lecture{09}{2023-11-16}{}
\begin{definition}
Let $R$ be a binary relation.
$R$ is called \vocab{well-founded}
iff for all classes $X$,
there is an $R$-least $y$ such that
there is no $z \in X$ with $(z,y) \in R$.
\end{definition}
\begin{theorem}[Induction (again, but now for classes)]
Suppose that $R$ is a well-founded relation.
Let $X$ be a class such that for all sets $x$,
\[
\{y : (y,x) \in R\} \subseteq X \implies x \in X.
\]
Then $X$ contains all sets.
\end{theorem}
\begin{proof}
Assume otherwise.
Consider $Y = \{x : x \not\in X\} \neq \emptyset$.
By hypothesis, there is some
$x \in Y$ such that $(y,x) \not\in R$ for all $y \in Y$.
In other words, if $(y,x) \in R$,
then $x \not\in Y$, i.e.~$x \in X$.
Thus $\{y: (y,x) \in R\} \subseteq X$.
Hence $x \in X \lightning$.
\end{proof}
An alternative way of formulating this is
\begin{theorem}
Suppose $R$ is a well-founded binary relation on $A$,
i.e.~$R \subseteq A \times A$.
Suppose for all $\overline{A} \subseteq A$
is such that for all $x \in X$,
\[
\{y \in A: (y,x) \in R\} \subseteq \overline{A} \implies x \in \overline{A}.
\]
Then $\overline{A} = A$.
\end{theorem}
\begin{definition}
Let $R$ be a binary relation.
$R$ is called \vocab{set-like}
iff for all $x$,
$\{y : (y,x) \in R\}$ is a set.
\end{definition}
\begin{theorem}
\yalabel{Recursion Theorem}{recursion}{thm:recursion}
Let $R$ be a well-founded
and set-like relation on $A$ (i.e.~$R \subseteq A \times A$).
Let $D$ be a class of triples
such that for all $u,x$ there is exactly
one $y$ with $(u,x,y) \in D$
(basically $(u,x) \mapsto y$ is a function).
Then there is a unique function $f$ on $A$
such that for all $x \in A$,
\[
(F\defon{ \{y \in A : (y,x) \in R\}}, x, F(x)) \in D\gist{,}{.}
\]
\gist{i.e.~$F(x)$ is computed from $F\defon{\{y \in A: (y,x) \in R\}}$.}{}
\end{theorem}
\begin{proof}
\gist{%
Uniqueness:
Let $F, F'$ be two such functions.
Suppose that $\overline{A} = \{ x \in A : F(x) \neq F'(x)\} \neq \emptyset$.
As $R$ is well-founded,
there is some $x \in \overline{A}$
such that $y \not\in \overline{A}$
for all $y \in A, (y,x) \in R$.
I.e. $F(y) = F'(y)$
for all $y \in A$, $(y,x) \in R$.
But then $F(x)$
is the unique $y$
with $(F\defon{\{z\colon (z,x) \in R\}}, x, y) \in D$,
in particular it is the same as $F'(x) \lightning$
Existence:
Let us call a (set) function $f$
\emph{good},
if
\begin{itemize}
\item $\dom(f) \subseteq A$,
\item if $x \in \dom(f)$ and $y \in A, (y,x) \in R$,
then $y \in \dom(f)$ and
\item for all $x \in \dom(f)$ :
\[
(f\defon{\{y \in A: (y,x) \in R\}}, x, f(x)) \in D.
\]
\end{itemize}
By the proof of uniqueness,
we have that all good functions are coherent,
i.e.~$f(x) = f'(x)$ for good functions
$f,f'$ and all $x \in \dom(f) \cap \dom(f')$.
We may now let $F = \bigcup \{f: f \text{ is good}\}$,
this exists by comprehension.
If $x \in \dom(F)$ and $y \in A$ with $(y,x) \in R$,
then $y \in \dom(F)$
and \[(F\defon{\{y : (y,x) \in R\}}, x,F(x)) \in D.\]
We need to show that $\dom(F) = A$.
This holds by induction:
Suppose for a contradiction that $A \setminus \dom(F) \neq \emptyset$.
Then there exists an $R$-least element $x$ in this set,
i.e.$x \not\in \dom(F)$,
but $y \in \dom(F)$ for all $(y,x) \in R$.
For each $y \in A$ with $(y,x) \in R$,
pick some good function $f_y$ with $y \in \dom(f_y)$
Since $R$ is set-like,
we have that $f = \bigcup_y f_y$ is a good function.
But then $f \cup (x,z)$,
where $z$ is unique such that $(f\defon{\{y : (y,x) \in R\}}, x, z) \in D$,
is good $\lightning$.
}{
\begin{itemize}
\item Uniqueness:
Consider $\overline{A} \coloneqq \{x \in A : F(x) \neq F'(x)\}$
for two such functions. If $\overline{A} \neq \emptyset$,
there is a minimal element $\lightning$.
\item Existence:
\begin{itemize}
\item call set-function $f$ \emph{good} iff:
\begin{itemize}
\item $\dom(f) \subseteq A$,
\item $x \in \dom(f), y <_R x \implies y \in \dom(f)$,
\item $\forall x \in \dom(f).~(f\defon{\{y \in A : y <_R x\}}, x, f(x)) \in D$.
\end{itemize}
\item $F \coloneqq \bigcup \{f : f \text{ good}\}$ (comprehension)
\item $\dom F = A$ (induction).
\end{itemize}
\end{itemize}
}
\end{proof}