w23-logic-2/inputs/lecture_05.tex
Josia Pietsch f4626be14b
Some checks failed
Build latex and deploy / checkout (push) Failing after 17m22s
some changes
2024-02-15 04:44:48 +01:00

313 lines
8.3 KiB
TeX

\lecture{05}{2023-10-30}{}
\begin{definition}
Zermelo:
\[\Zermelo \coloneqq \AxExt + \AxFund + \AxPair + \AxUnion + \AxPow + \AxInf + \AxAus_{\phi}\]
Zermelo and Fraenkl:
\[
{\ZF} \coloneqq Z + \AxRep_{\phi} % TODO fix parenthesis
\]
\[
{\ZFC} \coloneqq \ZF + \AxC
\]
Variants:
\[
{\ZFC^{-}} \coloneqq \ZFC \setminus \AxPow.
\]
\[
{\ZFC^{-\infty}} \coloneqq \ZFC \setminus \AxInf
\]
\end{definition}
\gist{%
\begin{definition}
For sets $x, y$ we write
$(x,y)$ for $\{\{x\}, \{x,y\}\}$.
\end{definition}
\begin{remark}
Note that $(x,y) = (a,b) \iff x = a \land y = b$.
$\ZFC$ proves that $(x,y)$ always exists.
\end{remark}
\begin{definition}
For sets $x_1,\ldots, x_{n+1}$
we write
\[
(x_1,\ldots,x_{n+1}) \coloneqq ((x_1,\ldots,x_n), x_{n+1})
\]
where we assume that $(x_1,\ldots,x_{n})$
is already defined.
\end{definition}
\begin{definition}
The \vocab{cartesian product}
$a \times b$ of two sets $a$ and $b$
is defined to be $a \times b \coloneqq \{(x,y) | x \in a \land y \in b\}$.
\end{definition}
\begin{fact}
$a \times b$ exists.
\end{fact}
\begin{proof}
Use \AxAus over $\cP(\cP(a \cup b))$.
\end{proof}
\begin{definition}
For $a_1,\ldots, a_n$
we define
\[
a_1 \times \ldots \times a_n \coloneqq \left( a_1 \times \ldots\times a_{n-1} \right) \times a_n.
\]
recursively.
For $a = a_1 = \ldots = a_n$,
we write $a^n$ for $a_1 \times \ldots \times a_n$.
\end{definition}
\begin{remark}
The fact that $\ZFC$ can be used
to encode all of mathematics,
should not be overestimated.
It is clumsy to do it that way.
Nobody cares anymore.
There are better foundations.
What makes $\ZFC$ special
is that it allows to investigate infinity.
\end{remark}
\begin{definition}
An \vocab{$n$-ary relation} $R$ is a subset
of $a_1 \times \ldots \times a_n$
for some sets $a_1,\ldots,a_n$.
For a \vocab{binary relation} $R $ (i.e.~$n = 2$)
we define
\[
\dom(R) \coloneqq \{ x | \exists y.~(x,y) \in R\}
\]
and
\[
\ran(R) \coloneqq \{ y | \exists x.~(x,y) \in R\}.
\]
\end{definition}
\begin{definition}
A binary relation $R$
is a \vocab{function}
iff
\[
\forall x \in \dom(R).~\exists y.~\forall y'.~(y' = y \iff xRy').
\]
A function $f$ is a function from $d$ to $b$
iff $d = \dom(f)$ and $\ran(f) \subseteq b$.
We write $f\colon d \to b$.
The set of all function from $d$ to $b$
is denoted by $\leftindex^d b$ or $b^d$.
\end{definition}
\begin{fact}
Given sets $d, b$ then
$\leftindex^d b$ exists.
\end{fact}
\begin{proof}
Apply again \AxAus over $\cP(d \times b)$.
\end{proof}
\begin{definition}
We all know how
\vocab{injective}, \vocab{surjective}, \vocab{bijective}, $\ldots$
are defined.
% TODO
\end{definition}
\begin{notation}
For $f\colon d \to b$ and $a \subseteq d$
we write $f''a \coloneqq \{f(x) : x \in a\}$
(the \vocab{pointwise image} of $a$ under $f$).
(In other mathematical fields, this is sometimes
denoted as $f(a)$. We don't do that here.)
\end{notation}
}{[Some boring definitions omitted.]}
\begin{definition}
A binary relation $\le $ on a set $a$
is a \vocab{partial order}
iff $\le $ is
\begin{itemize}
\item \vocab{reflexive},
i.e.~$x \le x$,
\item \vocab{antisymmetric} (sometimes
this is also called \vocab{symmetric}),
i.e.~
$x \le y \land x \le y \implies x = y$,
and
\item \vocab{transitive},
i.e.~$x \le y \land y \le z \implies x \le z$.
\end{itemize}
If additionally $\forall x,y.~(x\le y \lor y \le x)$,
$\le $ is called a \vocab{linear order}
(or \vocab{total order}).
\end{definition}
\begin{definition}
Let $(a, \le )$ be a partial order.
Let $b \subseteq a$.
We say that $x$ is a \vocab{maximal element}
of $b$
iff
\[
x \in b \land \lnot \exists y \in b .~(y > x).
\]
We say that $x$ is the \vocab{maximum} of $b$,
$x = \text{\vocab{$\max$}}(b)$,
iff
\[
x \in b \land \forall y \in b.~y \le x.
\]
In a similar way we define \vocab[Minimal element]{minimal elements}
and the \vocab{minimum} of $b$.
We say that $x $ is an \vocab{upper bound}
of $b$ if $\forall y \in b.~(x \ge y)$.
Similarly \vocab[Lower bound]{lower bounds}
are defined.
We say $x = \text{\vocab{$\sup$}}(b)$ if $x$ is the minimum
of the set of upper bounds of $b$.
(This does not necessarily exist.)
Similarly $\text{\vocab{$\inf$}}(b)$ is defined.
\end{definition}
\gist{
\begin{remark}+
Note that in a partial order,
a maximal element is not necessarily a maximum.
However for linear orders these notions coincide.
\end{remark}
\begin{definition}
Let $(a, \le_a)$ and $(b, \le_b)$
be two partial orders.
Then a function $f\colon a\to b$ is called
\vocab{order-preserving}
iff
\[
\forall x,y \in a.~(x \le_a y) \iff f(x) \le_b f(y).
\]
An order-preserving bijection
is called an \vocab{isomorphism}.
We write $(a,\le_a) \cong (b, \le_b)$
if they are isomorphic.
\end{definition}
}{}
\begin{definition}
Let $(a,\le)$ be a partial order.
Then $(a,\le)$ is
a \vocab{well-order},
iff
\[
\forall b \subseteq a.~b\neq \emptyset \implies \min(b) \text{ exists}.
\]
\end{definition}
\begin{fact}
Let $(a, \le )$ be a well-order,
then $(a, \le )$ is total.
\end{fact}
\begin{proof}
For $x,y \in a$
consider $\{x,y\}$.
Then $\min(\{x,y\}) \le x,y$.
\end{proof}
\begin{lemma}
Let $(a, \le)$ be a well-order.
Let $f\colon a \to a$
be an order-preserving map.
Then $f(x) \ge x$ for all $x \in a$.
\end{lemma}
\begin{proof}
Consider $x_0 \coloneqq \min(\{x \in a | f(x) < x\})$.
% Then $y_0 \coloneqq f(x_0) < x_0$,
% so $f(f(y_0)) < f(x_0) < x_0 = y_0$.
\end{proof}
\begin{lemma}
If $(a, \le )$ is a well-order
and $f\colon (a, \le) \leftrightarrow (a, \le)$
is an isomorphism,
then $f$ is the identity.
\end{lemma}
\begin{proof}
By the last lemma, we know that
$f(x) \ge x$ and $f^{-1}(x) \ge x$.
\end{proof}
\begin{lemma}
Suppose $(a, \le_a)$ and $(b, \le_b)$ are well-orderings
such that $(a, \le_a) \cong (b, \le_b)$.
Then there is a unique isomorphism
$f\colon a \to b$.
\end{lemma}
\begin{proof}
Let $f,g$ be isomorphisms
and consider $g^{-1}\circ f \colon (a, \le_a) \xrightarrow{\cong} (a, \le_a )$.
We have already shown that $g^{-1}\circ f$ must be the identity,
so $g = f$.
\end{proof}
\begin{definition}
If $(a, \le )$ is a partial order
and if $x \in a$,
then write $(a, \le )\defon{x}$
for $(\{y \in a | y \le x\}, \le \cap \{y \in a | y \le x\}^2)$.
\end{definition}
\begin{abuse}+
For a partial order $(a, \le_a)$
we %\footnote{i.e.~the lazy author of these notes}
sometimes just write $a$.
\end{abuse}
\begin{theorem}
Let $(a,\le_a)$ and $(b,\le_b)$ be well-orders.
Then exactly one of the following three holds:
\begin{enumerate}[(i)]
\item $a \cong b$,
\item $\exists x \in b.~a \cong b\defon{x}$,
\item $\exists x \in a.~a\defon{x} \cong b$.
\end{enumerate}
\end{theorem}
\begin{proof}
Let us define a relation $r \subseteq a \times b$ as follows:
Let $(x,y) \in r$ iff $a\defon{x} \cong b\defon{y}$.
By the previous lemma,
for each $x \in a$, there is at most one $y \in b$
such that $(x,y) \in r$
and vice versa,
so $r$ is an injective function
from a subset of $a$ to a subset of $b$.
\begin{claim}
$r$ is order-preserving:
\end{claim}
\begin{subproof}
If $x <_a x'$, then consider the unique $y'$
such that $a\defon{x'} \cong b\defon{y'}$.
The isomorphism restricts to $a\defon{x} \cong b\defon{y}$
for some $y <_b y'$.
\end{subproof}
\begin{claim}
$\dom(r) = a \lor \ran(r) = b$.
\end{claim}
\begin{subproof}
Suppose that $\dom(r) \subsetneq a$
and $\ran(r) \subsetneq b$.
Let $x \coloneqq \min(a \setminus \dom(r))$
and $y \coloneqq \min(b\setminus \ran(r))$.
Then $(a,\le_a)\defon{x} \cong (b, \le_b)\defon{y}$.
But now $(x,y) \in r$ which is a contradiction.
\end{subproof}
\end{proof}