\lecture{05}{2023-10-30}{} \begin{definition} Zermelo: \[\Zermelo \coloneqq \AxExt + \AxFund + \AxPair + \AxUnion + \AxPow + \AxInf + \AxAus_{\phi}\] Zermelo and Fraenkl: \[ {\ZF} \coloneqq Z + \AxRep_{\phi} % TODO fix parenthesis \] \[ {\ZFC} \coloneqq \ZF + \AxC \] Variants: \[ {\ZFC^{-}} \coloneqq \ZFC \setminus \AxPow. \] \[ {\ZFC^{-\infty}} \coloneqq \ZFC \setminus \AxInf \] \end{definition} \gist{% \begin{definition} For sets $x, y$ we write $(x,y)$ for $\{\{x\}, \{x,y\}\}$. \end{definition} \begin{remark} Note that $(x,y) = (a,b) \iff x = a \land y = b$. $\ZFC$ proves that $(x,y)$ always exists. \end{remark} \begin{definition} For sets $x_1,\ldots, x_{n+1}$ we write \[ (x_1,\ldots,x_{n+1}) \coloneqq ((x_1,\ldots,x_n), x_{n+1}) \] where we assume that $(x_1,\ldots,x_{n})$ is already defined. \end{definition} \begin{definition} The \vocab{cartesian product} $a \times b$ of two sets $a$ and $b$ is defined to be $a \times b \coloneqq \{(x,y) | x \in a \land y \in b\}$. \end{definition} \begin{fact} $a \times b$ exists. \end{fact} \begin{proof} Use \AxAus over $\cP(\cP(a \cup b))$. \end{proof} \begin{definition} For $a_1,\ldots, a_n$ we define \[ a_1 \times \ldots \times a_n \coloneqq \left( a_1 \times \ldots\times a_{n-1} \right) \times a_n. \] recursively. For $a = a_1 = \ldots = a_n$, we write $a^n$ for $a_1 \times \ldots \times a_n$. \end{definition} \begin{remark} The fact that $\ZFC$ can be used to encode all of mathematics, should not be overestimated. It is clumsy to do it that way. Nobody cares anymore. There are better foundations. What makes $\ZFC$ special is that it allows to investigate infinity. \end{remark} \begin{definition} An \vocab{$n$-ary relation} $R$ is a subset of $a_1 \times \ldots \times a_n$ for some sets $a_1,\ldots,a_n$. For a \vocab{binary relation} $R $ (i.e.~$n = 2$) we define \[ \dom(R) \coloneqq \{ x | \exists y.~(x,y) \in R\} \] and \[ \ran(R) \coloneqq \{ y | \exists x.~(x,y) \in R\}. \] \end{definition} \begin{definition} A binary relation $R$ is a \vocab{function} iff \[ \forall x \in \dom(R).~\exists y.~\forall y'.~(y' = y \iff xRy'). \] A function $f$ is a function from $d$ to $b$ iff $d = \dom(f)$ and $\ran(f) \subseteq b$. We write $f\colon d \to b$. The set of all function from $d$ to $b$ is denoted by $\leftindex^d b$ or $b^d$. \end{definition} \begin{fact} Given sets $d, b$ then $\leftindex^d b$ exists. \end{fact} \begin{proof} Apply again \AxAus over $\cP(d \times b)$. \end{proof} \begin{definition} We all know how \vocab{injective}, \vocab{surjective}, \vocab{bijective}, $\ldots$ are defined. % TODO \end{definition} \begin{notation} For $f\colon d \to b$ and $a \subseteq d$ we write $f''a \coloneqq \{f(x) : x \in a\}$ (the \vocab{pointwise image} of $a$ under $f$). (In other mathematical fields, this is sometimes denoted as $f(a)$. We don't do that here.) \end{notation} }{[Some boring definitions omitted.]} \begin{definition} A binary relation $\le $ on a set $a$ is a \vocab{partial order} iff $\le $ is \begin{itemize} \item \vocab{reflexive}, i.e.~$x \le x$, \item \vocab{antisymmetric} (sometimes this is also called \vocab{symmetric}), i.e.~ $x \le y \land x \le y \implies x = y$, and \item \vocab{transitive}, i.e.~$x \le y \land y \le z \implies x \le z$. \end{itemize} If additionally $\forall x,y.~(x\le y \lor y \le x)$, $\le $ is called a \vocab{linear order} (or \vocab{total order}). \end{definition} \begin{definition} Let $(a, \le )$ be a partial order. Let $b \subseteq a$. We say that $x$ is a \vocab{maximal element} of $b$ iff \[ x \in b \land \lnot \exists y \in b .~(y > x). \] We say that $x$ is the \vocab{maximum} of $b$, $x = \text{\vocab{$\max$}}(b)$, iff \[ x \in b \land \forall y \in b.~y \le x. \] In a similar way we define \vocab[Minimal element]{minimal elements} and the \vocab{minimum} of $b$. We say that $x $ is an \vocab{upper bound} of $b$ if $\forall y \in b.~(x \ge y)$. Similarly \vocab[Lower bound]{lower bounds} are defined. We say $x = \text{\vocab{$\sup$}}(b)$ if $x$ is the minimum of the set of upper bounds of $b$. (This does not necessarily exist.) Similarly $\text{\vocab{$\inf$}}(b)$ is defined. \end{definition} \gist{ \begin{remark}+ Note that in a partial order, a maximal element is not necessarily a maximum. However for linear orders these notions coincide. \end{remark} \begin{definition} Let $(a, \le_a)$ and $(b, \le_b)$ be two partial orders. Then a function $f\colon a\to b$ is called \vocab{order-preserving} iff \[ \forall x,y \in a.~(x \le_a y) \iff f(x) \le_b f(y). \] An order-preserving bijection is called an \vocab{isomorphism}. We write $(a,\le_a) \cong (b, \le_b)$ if they are isomorphic. \end{definition} }{} \begin{definition} Let $(a,\le)$ be a partial order. Then $(a,\le)$ is a \vocab{well-order}, iff \[ \forall b \subseteq a.~b\neq \emptyset \implies \min(b) \text{ exists}. \] \end{definition} \begin{fact} Let $(a, \le )$ be a well-order, then $(a, \le )$ is total. \end{fact} \begin{proof} For $x,y \in a$ consider $\{x,y\}$. Then $\min(\{x,y\}) \le x,y$. \end{proof} \begin{lemma} Let $(a, \le)$ be a well-order. Let $f\colon a \to a$ be an order-preserving map. Then $f(x) \ge x$ for all $x \in a$. \end{lemma} \begin{proof} Consider $x_0 \coloneqq \min(\{x \in a | f(x) < x\})$. % Then $y_0 \coloneqq f(x_0) < x_0$, % so $f(f(y_0)) < f(x_0) < x_0 = y_0$. \end{proof} \begin{lemma} If $(a, \le )$ is a well-order and $f\colon (a, \le) \leftrightarrow (a, \le)$ is an isomorphism, then $f$ is the identity. \end{lemma} \begin{proof} By the last lemma, we know that $f(x) \ge x$ and $f^{-1}(x) \ge x$. \end{proof} \begin{lemma} Suppose $(a, \le_a)$ and $(b, \le_b)$ are well-orderings such that $(a, \le_a) \cong (b, \le_b)$. Then there is a unique isomorphism $f\colon a \to b$. \end{lemma} \begin{proof} Let $f,g$ be isomorphisms and consider $g^{-1}\circ f \colon (a, \le_a) \xrightarrow{\cong} (a, \le_a )$. We have already shown that $g^{-1}\circ f$ must be the identity, so $g = f$. \end{proof} \begin{definition} If $(a, \le )$ is a partial order and if $x \in a$, then write $(a, \le )\defon{x}$ for $(\{y \in a | y \le x\}, \le \cap \{y \in a | y \le x\}^2)$. \end{definition} \begin{abuse}+ For a partial order $(a, \le_a)$ we %\footnote{i.e.~the lazy author of these notes} sometimes just write $a$. \end{abuse} \begin{theorem} Let $(a,\le_a)$ and $(b,\le_b)$ be well-orders. Then exactly one of the following three holds: \begin{enumerate}[(i)] \item $a \cong b$, \item $\exists x \in b.~a \cong b\defon{x}$, \item $\exists x \in a.~a\defon{x} \cong b$. \end{enumerate} \end{theorem} \begin{proof} Let us define a relation $r \subseteq a \times b$ as follows: Let $(x,y) \in r$ iff $a\defon{x} \cong b\defon{y}$. By the previous lemma, for each $x \in a$, there is at most one $y \in b$ such that $(x,y) \in r$ and vice versa, so $r$ is an injective function from a subset of $a$ to a subset of $b$. \begin{claim} $r$ is order-preserving: \end{claim} \begin{subproof} If $x <_a x'$, then consider the unique $y'$ such that $a\defon{x'} \cong b\defon{y'}$. The isomorphism restricts to $a\defon{x} \cong b\defon{y}$ for some $y <_b y'$. \end{subproof} \begin{claim} $\dom(r) = a \lor \ran(r) = b$. \end{claim} \begin{subproof} Suppose that $\dom(r) \subsetneq a$ and $\ran(r) \subsetneq b$. Let $x \coloneqq \min(a \setminus \dom(r))$ and $y \coloneqq \min(b\setminus \ran(r))$. Then $(a,\le_a)\defon{x} \cong (b, \le_b)\defon{y}$. But now $(x,y) \in r$ which is a contradiction. \end{subproof} \end{proof}